

Welcome to Blocks’ documentation!

Blocks is a framework that helps you build and manage neural network models on
using Theano.

Want to get try it out? Start by installing Blocks and having a
look at the quickstart further down this page. Once you’re
hooked, try your hand at the tutorials and the
examples [https://github.com/mila-udem/blocks-examples].

Blocks is developed in parallel with Fuel [https://github.com/mila-udem/fuel], a dataset processing framework.

Warning

Blocks is a new project which is still under development. As such, certain
(all) parts of the framework are subject to change. The last stable (and
thus likely an outdated) version can be found in the stable branch.

Tip

That said, if you are interested in using Blocks and run into any problems,
feel free to ask your question on the mailing list [https://groups.google.com/forum/#!forum/blocks-users]. Also, don’t hesitate
to file bug reports and feature requests by making a GitHub issue [https://github.com/mila-udem/blocks/issues/new].

Tutorials

	Installation

	Introduction tutorial

	Building with bricks

	Managing the computation graph

	Live plotting

In-depth

	Recurrent neural networks

	Configuration

	Create your own brick

	Serialization

	API Reference

	Development

Quickstart

Construct your model.

>>> mlp = MLP(activations=[Tanh(), Softmax()], dims=[784, 100, 10],
... weights_init=IsotropicGaussian(0.01), biases_init=Constant(0))
>>> mlp.initialize()

Calculate your loss function.

>>> x = tensor.matrix('features')
>>> y = tensor.lmatrix('targets')
>>> y_hat = mlp.apply(x)
>>> cost = CategoricalCrossEntropy().apply(y.flatten(), y_hat)
>>> error_rate = MisclassificationRate().apply(y.flatten(), y_hat)

Load your training data using Fuel.

>>> mnist_train = MNIST(("train",))
>>> train_stream = Flatten(
... DataStream.default_stream(
... dataset=mnist_train,
... iteration_scheme=SequentialScheme(mnist_train.num_examples, 128)),
... which_sources=('features',))
>>> mnist_test = MNIST(("test",))
>>> test_stream = Flatten(
... DataStream.default_stream(
... dataset=mnist_test,
... iteration_scheme=SequentialScheme(mnist_test.num_examples, 1024)),
... which_sources=('features',))

And train!

>>> from blocks.model import Model
>>> main_loop = MainLoop(
... model=Model(cost), data_stream=train_stream,
... algorithm=GradientDescent(
... cost=cost, parameters=ComputationGraph(cost).parameters,
... step_rule=Scale(learning_rate=0.1)),
... extensions=[FinishAfter(after_n_epochs=5),
... DataStreamMonitoring(
... variables=[cost, error_rate],
... data_stream=test_stream,
... prefix="test"),
... Printing()])
>>> main_loop.run()

...

For a runnable version of this code, please see the MNIST demo
in our repository with examples [https://github.com/mila-udem/blocks-examples].

Features

Currently Blocks supports and provides:

	Constructing parametrized Theano operations, called “bricks”

	Pattern matching to select variables and bricks in large models

	Algorithms to optimize your model

	Saving and resuming of training

	Monitoring and analyzing values during training progress (on the training set
as well as on test sets)

	Application of graph transformations, such as dropout (limited support)

In the future we also hope to support:

	Dimension, type and axes-checking

[image: _images/blocks.svg]
 [https://coveralls.io/r/mila-udem/blocks][image: _images/blocks1.svg]
 [https://travis-ci.org/mila-udem/blocks][image: _images/53dec9b00a747f3468149f0481f7cd32b31d5a1b.svg]
 [https://blocks.readthedocs.org/][image: _images/blocks2.svg]
 [https://scrutinizer-ci.com/g/mila-udem/blocks/][image: _images/license-MIT-blue.svg]
 [https://github.com/mila-udem/blocks/blob/master/LICENSE]

Indices and tables

	Index

	Module Index

Installation

The easiest way to install Blocks is using the Python package manager
pip. Blocks isn’t listed yet on the Python Package Index (PyPI), so
you will have to grab it directly from GitHub.

$ pip install git+git://github.com/mila-udem/blocks.git \
 -r https://raw.githubusercontent.com/mila-udem/blocks/master/requirements.txt

This will give you the cutting-edge development version. The latest stable
release is in the stable branch and can be installed as follows.

$ pip install git+git://github.com/mila-udem/blocks.git@stable \
 -r https://raw.githubusercontent.com/mila-udem/blocks/stable/requirements.txt

Note

Blocks relies on several packages, such as Theano [http://deeplearning.net/software/theano/] and picklable_itertools [https://github.com/dwf/picklable_itertools],
to be installed directly from GitHub. The only way of doing so reliably is
through a requirements.txt file, which is why this installation command
might look slightly different from what you’re used to.

Installing requirements from GitHub requires pip 1.5 or higher; you can
update with pip update pip.

If you don’t have administrative rights, add the --user switch to the
install commands to install the packages in your home folder. If you want to
update Blocks, simply repeat the first command with the --upgrade switch
added to pull the latest version from GitHub.

Warning

Pip may try to install or update NumPy and SciPy if they are not present or
outdated. However, pip’s versions might not be linked to an optimized BLAS
implementation. To prevent this from happening make sure you update NumPy
and SciPy using your system’s package manager (e.g. apt-get or
yum), or use a Python distribution like Anaconda [https://store.continuum.io/cshop/anaconda/], before installing
Blocks. You can also pass the --no-deps switch and install all the
requirements manually.

If the installation crashes with ImportError: No module named
numpy.distutils.core, install NumPy and try again again.

Requirements

Blocks’ requirements are

	Theano [http://deeplearning.net/software/theano/], for pretty much everything

	PyYAML [http://pyyaml.org/wiki/PyYAML], to parse the configuration file

	six [http://pythonhosted.org/six/], to support both Python 2 and 3 with a single codebase

	Toolz [http://toolz.readthedocs.org/], to add a bit of functional programming where it is needed

Bokeh [http://bokeh.pydata.org/] is an optional requirement for if you want to use live plotting of your
training progress (part of blocks-extras_).

nose2 [https://nose2.readthedocs.org/] is an optional requirement, used to run the tests.

We develop using the bleeding-edge version of Theano, so be sure to follow the
relevant installation instructions [http://deeplearning.net/software/theano/install.html#bleeding-edge-install-instructions] to make sure that your Theano version is
up to date if you didn’t install it through Blocks.

Development

If you want to work on Blocks’ development, your first step is to fork Blocks
on GitHub [https://github.com/mila-udem/blocks/fork]. You will now want to install your fork of Blocks in editable mode.
To install in your home directory, use the following command, replacing USER
with your own GitHub user name:

$ pip install -e git+git@github.com:USER/blocks.git#egg=blocks[test,docs] --src=$HOME \
 -r https://raw.githubusercontent.com/mila-udem/blocks/master/requirements.txt

As with the usual installation, you can use --user or --no-deps if you
need to. You can now make changes in the blocks directory created by pip,
push to your repository and make a pull request.

If you had already cloned the GitHub repository, you can use the following
command from the folder you cloned Blocks to:

$ pip install -e file:.#egg=blocks[test,docs] -r requirements.txt

Documentation

If you want to build a local copy of the documentation, follow the instructions
at the documentation development guidelines.

Introduction tutorial

In this tutorial we will perform handwriting recognition by training a
multilayer perceptron [https://en.wikipedia.org/wiki/Multilayer_perceptron] (MLP) on the MNIST handwritten digit database [http://yann.lecun.com/exdb/mnist/].

The Task

MNIST is a dataset which consists of 70,000 handwritten digits. Each digit is a
grayscale image of 28 by 28 pixels. Our task is to classify each of the images
into one of the 10 categories representing the numbers from 0 to 9.

[image: _images/mnist.png]
Sample MNIST digits

The Model

We will train a simple MLP with a single hidden layer that uses the rectifier [https://en.wikipedia.org/wiki/Rectifier_%28neural_networks%29]
activation function. Our output layer will consist of a softmax [https://en.wikipedia.org/wiki/Softmax_function] function with
10 units; one for each class. Mathematically speaking, our model is parametrized
by \(\mathbf{\theta}\), defined as the weight matrices
\(\mathbf{W}^{(1)}\) and \(\mathbf{W}^{(2)}\), and bias vectors
\(\mathbf{b}^{(1)}\) and \(\mathbf{b}^{(2)}\). The rectifier activation
function is defined as

\[\mathrm{ReLU}(\mathbf{x})_i = \max(0, \mathbf{x}_i)\]

and our softmax output function is defined as

\[\mathrm{softmax}(\mathbf{x})_i = \frac{e^{\mathbf{x}_i}}{\sum_{j=1}^n e^{\mathbf{x}_j}}\]

Hence, our complete model is

\[f(\mathbf{x}; \mathbf{\theta}) = \mathrm{softmax}(\mathbf{W}^{(2)}\mathrm{ReLU}(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)}) + \mathbf{b}^{(2)})\]

Since the output of a softmax sums to 1, we can interpret it as a categorical
probability distribution: \(f(\mathbf{x})_c = \hat p(y = c \mid
\mathbf{x})\), where \(\mathbf{x}\) is the 784-dimensional (28 × 28) input
and \(c \in \{0, ..., 9\}\) one of the 10 classes. We can train the
parameters of our model by minimizing the negative log-likelihood i.e. the
cross-entropy between our model’s output and the target distribution. This
means we will minimize the sum of

\[l(\mathbf{f}(\mathbf{x}), y) = -\sum_{c=0}^9 \mathbf{1}_{(y=c)} \log f(\mathbf{x})_c = -\log f(\mathbf{x})_y\]

(where \(\mathbf{1}\) is the indicator function) over all examples. We use
stochastic gradient descent [https://en.wikipedia.org/wiki/Stochastic_gradient_descent] (SGD) on mini-batches for this.

Building the model

Blocks uses “bricks” to build models. Bricks are parametrized Theano
operations. You can read more about it in the
building with bricks tutorial.

Constructing the model with Blocks is very simple. We start by defining the
input variable using Theano.

Tip

Want to follow along with the Python code? If you are using IPython, enable
the doctest mode [http://ipython.org/ipython-doc/dev/interactive/tips.html#run-doctests] using the special %doctest_mode command so that you
can copy-paste the examples below (including the >>> prompts) straight
into the IPython interpreter.

>>> from theano import tensor
>>> x = tensor.matrix('features')

Note that we picked the name 'features' for our input. This is important,
because the name needs to match the name of the data source we want to train on.
MNIST defines two data sources: 'features' and 'targets'.

For the sake of this tutorial, we will go through building an MLP the long way.
For a much quicker way, skip right to the end of the next section. We begin
with applying the linear transformations and activations.

We start by initializing bricks with certain parameters e.g. input_dim.
After initialization we can apply our bricks on Theano variables to build the model
we want. We’ll talk more about bricks in the next tutorial, Building with bricks.

>>> from blocks.bricks import Linear, Rectifier, Softmax
>>> input_to_hidden = Linear(name='input_to_hidden', input_dim=784, output_dim=100)
>>> h = Rectifier().apply(input_to_hidden.apply(x))
>>> hidden_to_output = Linear(name='hidden_to_output', input_dim=100, output_dim=10)
>>> y_hat = Softmax().apply(hidden_to_output.apply(h))

Loss function and regularization

Now that we have built our model, let’s define the cost to minimize. For this,
we will need the Theano variable representing the target labels.

>>> y = tensor.lmatrix('targets')
>>> from blocks.bricks.cost import CategoricalCrossEntropy
>>> cost = CategoricalCrossEntropy().apply(y.flatten(), y_hat)

To reduce the risk of overfitting, we can penalize excessive values of
the parameters by adding a \(L2\)-regularization term (also known as
weight decay) to the objective function:

\[l(\mathbf{f}(\mathbf{x}), y) = -\log f(\mathbf{x})_y + \lambda_1\|\mathbf{W}^{(1)}\|^2 + \lambda_2\|\mathbf{W}^{(2)}\|^2\]

To get the weights from our model, we will use Blocks’ annotation features (read
more about them in the Managing the computation graph tutorial).

>>> from blocks.roles import WEIGHT
>>> from blocks.graph import ComputationGraph
>>> from blocks.filter import VariableFilter
>>> cg = ComputationGraph(cost)
>>> W1, W2 = VariableFilter(roles=[WEIGHT])(cg.variables)
>>> cost = cost + 0.005 * (W1 ** 2).sum() + 0.005 * (W2 ** 2).sum()
>>> cost.name = 'cost_with_regularization'

Note

Note that we explicitly gave our variable a name. We do this so that when we
monitor the performance of our model, the progress monitor will know what
name to report in the logs.

Here we set \(\lambda_1 = \lambda_2 = 0.005\). And that’s it! We now have
the final objective function we want to optimize.

But creating a simple MLP this way is rather cumbersome. In practice, we would
have used the MLP class instead.

>>> from blocks.bricks import MLP
>>> mlp = MLP(activations=[Rectifier(), Softmax()], dims=[784, 100, 10]).apply(x)

Initializing the parameters

When we constructed the Linear bricks to build our
model, they automatically allocated Theano shared variables to store their
parameters in. All of these parameters were initially set to NaN. Before
we start training our network, we will want to initialize these parameters
by sampling them from a particular probability distribution. Bricks can do this
for you.

>>> from blocks.initialization import IsotropicGaussian, Constant
>>> input_to_hidden.weights_init = hidden_to_output.weights_init = IsotropicGaussian(0.01)
>>> input_to_hidden.biases_init = hidden_to_output.biases_init = Constant(0)
>>> input_to_hidden.initialize()
>>> hidden_to_output.initialize()

We have now initialized our weight matrices with entries drawn from a normal
distribution with a standard deviation of 0.01.

>>> W1.get_value()
 array([[0.01624345, -0.00611756, -0.00528172, ..., 0.00043597, ...

Training your model

Besides helping you build models, Blocks also provides the main other features
needed to train a model. It has a set of training algorithms (like SGD), an
interface to datasets, and a training loop that allows you to monitor and
control the training process.

We want to train our model on the training set of MNIST. We load the data using
the Fuel [http://fuel.readthedocs.org/en/latest/] framework. Have a look at this tutorial [https://fuel.readthedocs.org/en/latest/built_in_datasets.html] to get started.

After having configured Fuel, you can load the dataset.

>>> from fuel.datasets import MNIST
>>> mnist = MNIST(("train",))

Datasets only provide an interface to the data. For actual training, we will
need to iterate over the data in minibatches. This is done by initiating a data
stream which makes use of a particular iteration scheme. We will use an
iteration scheme that iterates over our MNIST examples sequentially in batches
of size 256.

>>> from fuel.streams import DataStream
>>> from fuel.schemes import SequentialScheme
>>> from fuel.transformers import Flatten
>>> data_stream = Flatten(DataStream.default_stream(
... mnist,
... iteration_scheme=SequentialScheme(mnist.num_examples, batch_size=256)))

The training algorithm we will use is straightforward SGD with a fixed
learning rate.

>>> from blocks.algorithms import GradientDescent, Scale
>>> algorithm = GradientDescent(cost=cost, parameters=cg.parameters,
... step_rule=Scale(learning_rate=0.1))

During training we will want to monitor the performance of our model on
a separate set of examples. Let’s create a new data stream for that.

>>> mnist_test = MNIST(("test",))
>>> data_stream_test = Flatten(DataStream.default_stream(
... mnist_test,
... iteration_scheme=SequentialScheme(
... mnist_test.num_examples, batch_size=1024)))

In order to monitor our performance on this data stream during training, we need
to use one of Blocks’ extensions, namely the DataStreamMonitoring
extension.

>>> from blocks.extensions.monitoring import DataStreamMonitoring
>>> monitor = DataStreamMonitoring(
... variables=[cost], data_stream=data_stream_test, prefix="test")

We can now use the MainLoop to combine all the different
bits and pieces. We use two more extensions to make our training stop after
a single epoch and to make sure that our progress is printed.

>>> from blocks.main_loop import MainLoop
>>> from blocks.extensions import FinishAfter, Printing
>>> main_loop = MainLoop(data_stream=data_stream, algorithm=algorithm,
... extensions=[monitor, FinishAfter(after_n_epochs=1), Printing()])
>>> main_loop.run()

BEFORE FIRST EPOCH

Training status:
 epochs_done: 0
 iterations_done: 0
Log records from the iteration 0:
 test_cost_with_regularization: 2.34244632721

AFTER ANOTHER EPOCH

Training status:
 epochs_done: 1
 iterations_done: 235
Log records from the iteration 235:
 test_cost_with_regularization: 0.664899230003
 training_finish_requested: True

TRAINING HAS BEEN FINISHED:

Training status:
 epochs_done: 1
 iterations_done: 235
Log records from the iteration 235:
 test_cost_with_regularization: 0.664899230003
 training_finish_requested: True
 training_finished: True

Building with bricks

Blocks is a framework that is supposed to make it easier to build complicated
neural network models on top of Theano [http://www.deeplearning.net/software/theano/]. In order to do so, we introduce the
concept of “bricks”, which you might have already come across in the
introduction tutorial.

Bricks life-cycle

Blocks uses “bricks” to build models. Bricks are parametrized Theano
operations. A brick is usually defined by a set of attributes and a set of
parameters, the former specifying the attributes that define the Block
(e.g., the number of input and output units), the latter representing the
parameters of the brick object that will vary during learning (e.g., the
weights and the biases).

The life-cycle of a brick is as follows:

	Configuration: set (part of) the attributes of the brick. Can take
place when the brick object is created, by setting the arguments of the
constructor, or later, by setting the attributes of the brick object. No
Theano variable is created in this phase.

	Allocation: (optional) allocate the Theano shared variables for the
parameters of the Brick. When allocate() is
called, the required Theano variables are allocated and initialized by
default to NaN.

	Application: instantiate a part of the Theano computational graph,
linking the inputs and the outputs of the brick through its parameters
and according to the attributes. Cannot be performed (i.e., results in an
error) if the Brick object is not fully configured.

	Initialization: set the numerical values of the Theano variables
that store the parameters of the Brick. The user-provided value will
replace the default initialization value.

Note

If the Theano variables of the brick object have not been allocated when
apply() is called, Blocks will quietly call
allocate().

Example

Bricks take Theano variables as inputs, and provide Theano variables as outputs.

>>> import theano
>>> from theano import tensor
>>> from blocks.bricks import Tanh
>>> x = tensor.vector('x')
>>> y = Tanh().apply(x)
>>> print(y)
tanh_apply_output
>>> isinstance(y, theano.Variable)
True

This is clearly an artificial example, as this seems like a complicated way of
writing y = tensor.tanh(x). To see why Blocks is useful, consider a very
common task when building neural networks: Applying a linear transformation
(with optional bias) to a vector, and then initializing the weight matrix and
bias vector with values drawn from a particular distribution.

>>> from blocks.bricks import Linear
>>> from blocks.initialization import IsotropicGaussian, Constant
>>> linear = Linear(input_dim=10, output_dim=5,
... weights_init=IsotropicGaussian(),
... biases_init=Constant(0.01))
>>> y = linear.apply(x)

So what happened here? We constructed a brick called Linear with a
particular configuration: the input dimension (10) and output dimension (5).
When we called Linear.apply, the brick automatically constructed
the shared Theano variables [http://deeplearning.net/software/theano/tutorial/examples.html#using-shared-variables] needed to store its parameters. In the lifecycle
of a brick we refer to this as allocation.

>>> linear.parameters
[W, b]
>>> linear.parameters[1].get_value()
array([nan, nan, nan, nan, nan])

By default, all our parameters are set to NaN. To initialize them, simply
call the initialize() method. This is the last
step in the brick lifecycle: initialization.

>>> linear.initialize()
>>> linear.parameters[1].get_value()
array([0.01, 0.01, 0.01, 0.01, 0.01])

Keep in mind that at the end of the day, bricks just help you construct a Theano
computational graph, so it is possible to mix in regular Theano statements when
building models. (However, you might miss out on some of the niftier features
of Blocks, such as variable annotation.)

>>> z = tensor.max(y + 4)

Lazy initialization

In the example above we configured the Linear brick during
initialization. We specified input and output dimensions, and specified the
way in which weight matrices should be initialized. But consider the
following case, which is quite common: We want to take the output of one
model, and feed it as an input to another model, but the output and input
dimensions don’t match, so we will need to add a linear transformation in
the middle.

To support this use case, bricks allow for lazy initialization, which is
turned on by default. This means that you can create a brick without configuring
it fully (or at all):

>>> linear2 = Linear(output_dim=10)
>>> print(linear2.input_dim)
NoneAllocation

Of course, as long as the brick is not configured, we cannot actually apply it!

>>> linear2.apply(x)
Traceback (most recent call last):
 ...
ValueError: allocation config not set: input_dim

We can now easily configure our brick based on other bricks.

>>> linear2.input_dim = linear.output_dim
>>> linear2.apply(x)
linear_apply_output

In the examples so far, the allocation of the parameters has always happened
implicitly when calling the apply methods, but it can also be called
explicitly. Consider the following example:

>>> linear3 = Linear(input_dim=10, output_dim=5)
>>> linear3.parameters
Traceback (most recent call last):
 ...
AttributeError: 'Linear' object has no attribute 'parameters'
>>> linear3.allocate()
>>> linear3.parameters
[W, b]

Nested bricks

Many neural network models, especially more complex ones, can be considered
hierarchical structures. Even a simple multi-layer perceptron consists of
layers, which in turn consist of a linear transformation followed by a
non-linear transformation.

As such, bricks can have children. Parent bricks are able to configure their
children, to e.g. make sure their configurations are compatible, or have
sensible defaults for a particular use case.

>>> from blocks.bricks import MLP, Logistic
>>> mlp = MLP(activations=[Logistic(name='sigmoid_0'),
... Logistic(name='sigmoid_1')], dims=[16, 8, 4],
... weights_init=IsotropicGaussian(), biases_init=Constant(0.01))
>>> [child.name for child in mlp.children]
['linear_0', 'sigmoid_0', 'linear_1', 'sigmoid_1']
>>> y = mlp.apply(x)
>>> mlp.children[0].input_dim
16

We can see that the MLP brick automatically constructed
two child bricks to perform the linear transformations. When we applied the MLP
to x, it automatically configured the input and output dimensions of its
children. Likewise, when we call initialize(),
it automatically pushed the weight matrix and biases initialization
configuration to its children.

>>> mlp.initialize()
>>> mlp.children[0].parameters[0].get_value()
array([[-0.38312393, -1.7718271 , 0.78074479, -0.74750996],
 ...
 [1.32390416, -0.56375355, -0.24268186, -2.06008577]])

There are cases where we want to override the way the parent brick configured
its children. For example in the case where we want to initialize the weights of
the first layer in an MLP slightly differently from the others. In order to do
so, we need to have a closer look at the life cycle of a brick. In the first two
sections we already talked talked about the three stages in the life cycle of a
brick:

	Construction of the brick

	Allocation of its parameters

	Initialization of its parameters

When dealing with children, the life cycle actually becomes a bit more
complicated. (The full life cycle is documented as part of the
Brick class.) Before allocating or initializing
parameters, the parent brick calls its
push_allocation_config() and
push_initialization_config()
methods, which configure the
children. If you want to override the child configuration, you will need to
call these methods manually, after which you can override the child bricks’
configuration.

>>> mlp = MLP(activations=[Logistic(name='sigmoid_0'),
... Logistic(name='sigmoid_1')], dims=[16, 8, 4],
... weights_init=IsotropicGaussian(), biases_init=Constant(0.01))
>>> y = mlp.apply(x)
>>> mlp.push_initialization_config()
>>> mlp.children[0].weights_init = Constant(0.01)
>>> mlp.initialize()
>>> mlp.children[0].parameters[0].get_value()
array([[0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
 ...
 [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]])

Managing the computation graph

Theano constructs computation graphs of mathematical expressions. Bricks help
you build these graphs, but they do more than that.
When you apply a brick to a Theano variable, it automatically annotates this
Theano variable, in two ways:

	It defines the role this variable plays in the computation graph e.g. it will
label weight matrices and biases as parameters, keep track of which variables
were the in- and outputs of your bricks, and more.

	It constructs auxiliary variables. These are variables which are not
outputs of your brick, but might still be of interest. For example, if you are
training a neural network, you might be interested to know the norm of your
weight matrices, so Blocks attaches these as auxiliary variables to the graph.

Using annotations

The ComputationGraph class provides an interface to this annotated
graph. For example, let’s say we want to train an autoencoder using weight decay
on some of the layers.

>>> from theano import tensor
>>> x = tensor.matrix('features')
>>> from blocks.bricks import MLP, Logistic, Rectifier
>>> from blocks.initialization import IsotropicGaussian, Constant
>>> mlp = MLP(activations=[Rectifier()] * 2 + [Logistic()],
... dims=[784, 256, 128, 784],
... weights_init=IsotropicGaussian(), biases_init=Constant(0.01))
>>> y_hat = mlp.apply(x)
>>> from blocks.bricks.cost import BinaryCrossEntropy
>>> cost = BinaryCrossEntropy().apply(x, y_hat)

Our Theano computation graph is now defined by our loss, cost. We initialize
the managed graph.

>>> from blocks.graph import ComputationGraph
>>> cg = ComputationGraph(cost)

We will find that there are many variables in this graph.

>>> print(cg.variables)
[TensorConstant{0}, b, W_norm, b_norm, features, TensorConstant{1.0}, ...]

To apply weight decay, we only need the weights matrices. These have been tagged
with the WEIGHT role. So let’s create a filter that finds these for us.

>>> from blocks.filter import VariableFilter
>>> from blocks.roles import WEIGHT
>>> print(VariableFilter(roles=[WEIGHT])(cg.variables))
[W, W, W]

Note that the variables in cg.variables are ordered according to the topological
order of their apply nodes. This means that for a feedforward network the
parameters will be returned in the order of our layers.

But let’s imagine for a second that we are actually dealing with a far more
complicated network, and we want to apply weight decay to the parameters of one
layer in particular. To do that, we can filter the variables by the bricks that
created them.

>>> second_layer = mlp.linear_transformations[1]
>>> from blocks.roles import PARAMETER
>>> var_filter = VariableFilter(roles=[PARAMETER], bricks=[second_layer])
>>> print(var_filter(cg.variables))
[b, W]

Note

There are a variety of different roles that you can filter by. You might have
noted already that there is a hierarchy to many of them: Filtering by
PARAMETER will also return variables of the child
roles WEIGHT and BIAS.

We can also see what auxiliary variables our bricks have created. These might be
of interest to monitor during training, for example.

>>> print(cg.auxiliary_variables)
[W_norm, b_norm, W_norm, b_norm, W_norm, b_norm]

Live plotting

Note

The live plotting functionality is part of blocks-extras, which must be
separately installed.

Plots often give a clearer image of your training progress than textual logs.
This is why Blocks has a Plot extension which
allows you to plot the entries from the log that you are interested in.

We use Bokeh [http://bokeh.pydata.org/], an interactive visualization library, to perform the plotting.
More specifically, we use the Bokeh Plot Server. This is basically a light web
server to which Blocks can send data, which then gets displayed in live plots in
your browser. The advantage of this approach is that you can even monitor your
models’ training progress over a network.

First, make sure that you installed the necessary requirements (see the
installation instructions). To start the server type

$ bokeh-server

This will start a server that is accesible on your computer at
http://localhost:5006. If you want to make sure that you can access your
plots across a network (or the internet), you can listen on all IP addresses
using

$ bokeh-server --ip 0.0.0.0

Now that your plotting server is up and running, start your main loop and
pass the Plot extension. Consider this example of fitting the
function \(f(x) = x^a\) to \(f(x) = x^2\).

>>> import theano
>>> a = theano.shared(3.)
>>> a.name = 'a'
>>> x = theano.tensor.scalar('data')
>>> cost = abs(x ** 2 - x ** a)
>>> cost.name = 'cost'

We train on a 150 random points in \([0, 1]\).

>>> import numpy
>>> from fuel.streams import DataStream
>>> from fuel.datasets import IterableDataset
>>> data_stream = DataStream(IterableDataset(
... numpy.random.rand(150).astype(theano.config.floatX)))

Now let’s train with gradient descent and plot the results.

>>> from blocks.main_loop import MainLoop
>>> from blocks.algorithms import GradientDescent, Scale
>>> from blocks.extensions import FinishAfter
>>> from blocks.extensions.monitoring import TrainingDataMonitoring
>>> from blocks_extras.extensions.plot import Plot
>>> main_loop = MainLoop(
... model=None, data_stream=data_stream,
... algorithm=GradientDescent(cost=cost,
... parameters=[a],
... step_rule=Scale(learning_rate=0.1)),
... extensions=[FinishAfter(after_n_epochs=1),
... TrainingDataMonitoring([cost, a], after_batch=True),
... Plot('Plotting example', channels=[['cost'], ['a']],
... after_batch=True)])
>>> main_loop.run()

Tip

If you want to plot channels in the same figure, pass them as part of the
same list. For example, [['cost', 'a']] would have plotted a single
figure with both the cost and the estimate of the exponent.

Open up your browser and go to http://localhost:5006 to see your model
cost go down in real-time!

[image: _images/plot_cost.png]
[image: _images/plot_a.png]

Recurrent neural networks

Warning

This section is very much work in progress!

This tutorial explains recurrent bricks in Blocks. Readers unfamiliar with
bricks should start with the bricks overview first
and continue with this tutorial afterwards.

Quickstart example

 digraph accumulator {
node [shape=plaintext,label="(1, 1, 1)"];
x_1; x_2; x_3;

node [shape=plaintext];
h_0 [label="(0, 0, 0)"]; h_1 [label="(1, 1, 1)"];
h_2 [label="(2, 2, 2)"]; h_3 [label="(3, 3, 3)"];

node [shape=diamond,regular=1,label="+"];
plus_1; plus_2; plus_3;

x_1 -> plus_1; x_2 -> plus_2; x_3 -> plus_3;
h_0 -> plus_1 -> h_1 -> plus_2 -> h_2 -> plus_3 -> h_3;

{ rank=source; h_0, h_1, h_2, h_3, plus_1, plus_2, plus_3 }
{ rank=sink; x_1, x_2, x_3}
}

As a starting example, we’ll be building an RNN which accumulates the input it
receives (figure above). The equation describing that RNN is

\[\mathbf{h}_t = \mathbf{h}_{t-1} + \mathbf{x}_t\]

>>> import numpy
>>> import theano
>>> from theano import tensor
>>> from blocks import initialization
>>> from blocks.bricks import Identity
>>> from blocks.bricks.recurrent import SimpleRecurrent
>>> x = tensor.tensor3('x')
>>> rnn = SimpleRecurrent(
... dim=3, activation=Identity(), weights_init=initialization.Identity())
>>> rnn.initialize()
>>> h = rnn.apply(x)
>>> f = theano.function([x], h)
>>> print(f(numpy.ones((3, 1, 3), dtype=theano.config.floatX)))
[[[1. 1. 1.]]

 [[2. 2. 2.]]

 [[3. 3. 3.]]]...

Let’s modify that example so that the RNN accumulates two times the input it
receives (figure below).

 digraph accumulator {
node [shape=plaintext,label="(1, 1, 1)"];
x_1; x_2; x_3;

node [shape=plaintext];
h_0 [label="(0, 0, 0)"]; h_1 [label="(2, 2, 2)"];
h_2 [label="(4, 4, 4)"]; h_3 [label="(6, 6, 6)"];

node [shape=diamond,regular=1,label="+"];
plus_1; plus_2; plus_3;

h_0 -> plus_1 -> h_1 -> plus_2 -> h_2 -> plus_3 -> h_3;

edge [label=" x2"];
x_1 -> plus_1; x_2 -> plus_2; x_3 -> plus_3;

{ rank=source; h_0, h_1, h_2, h_3, plus_1, plus_2, plus_3 }
{ rank=sink; x_1, x_2, x_3}
}

The equation for the RNN is

\[\mathbf{h}_t = \mathbf{h}_{t-1} + 2 \cdot \mathbf{x}_t\]

>>> from blocks.bricks import Linear
>>> doubler = Linear(
... input_dim=3, output_dim=3, weights_init=initialization.Identity(2),
... biases_init=initialization.Constant(0))
>>> doubler.initialize()
>>> h_doubler = rnn.apply(doubler.apply(x))
>>> f = theano.function([x], h_doubler)
>>> print(f(numpy.ones((3, 1, 3), dtype=theano.config.floatX)))
[[[2. 2. 2.]]

 [[4. 4. 4.]]

 [[6. 6. 6.]]]...

Note that in order to double the input we had to apply a bricks.Linear
brick to x, even though

\[\mathbf{h}_t = f(\mathbf{V}\mathbf{h}_{t-1} + \mathbf{W}\mathbf{x}_t + \mathbf{b})\]

is what is usually thought of as the RNN equation. The reason why recurrent
bricks work that way is it allows greater flexibility and modularity:
\(\mathbf{W}\mathbf{x}_t\) can be replaced by a whole neural network if we
want.

Initial states

 digraph accumulator {
node [shape=plaintext,label="(1, 1, 1)"];
x_1; x_2; x_3;

node [shape=plaintext];
h_0 [label="(1, 1, 1)"]; h_1 [label="(2, 2, 2)"];
h_2 [label="(3, 3, 3)"]; h_3 [label="(4, 4, 4)"];

node [shape=diamond,regular=1,label="+"];
plus_1; plus_2; plus_3;

x_1 -> plus_1; x_2 -> plus_2; x_3 -> plus_3;
h_0 -> plus_1 -> h_1 -> plus_2 -> h_2 -> plus_3 -> h_3;

{ rank=source; h_0, h_1, h_2, h_3, plus_1, plus_2, plus_3 }
{ rank=sink; x_1, x_2, x_3}
}

Recurrent models all have in common that their initial state has to be
specified. However, in constructing our toy examples, we omitted to pass
\(\mathbf{h}_0\) when applying the recurrent brick. What happened?

It turns out that recurrent bricks set that initial state to zero if it’s not
passed as argument, which is a good sane default in most cases, but we can just
as well set it explicitly.

We will modify the starting example so that it accumulates the input it
receives, but starting from one instead of zero (figure above):

\[\mathbf{h}_t = \mathbf{h}_{t-1} + \mathbf{x}_t, \quad \mathbf{h}_0 = 1\]

>>> h0 = tensor.matrix('h0')
>>> h = rnn.apply(inputs=x, states=h0)
>>> f = theano.function([x, h0], h)
>>> print(f(numpy.ones((3, 1, 3), dtype=theano.config.floatX),
... numpy.ones((1, 3), dtype=theano.config.floatX)))
[[[2. 2. 2.]]

 [[3. 3. 3.]]

 [[4. 4. 4.]]]...

Reverse

Todo

Say something about the reverse argument

Getting initial states back

Todo

Say something about the return_initial_states argument

Iterate (or not)

The apply method of a recurrent brick accepts an iterate argument,
which defaults to True. It is the reason for passing above a tensor of one
more dimension than described in recurrent.SimpleRecurrent.apply() - the
extra first dimension corresponds to the length of the sequence we are iterating
over.

Setting iterate to False causes the apply method to compute only
one step in the sequence.

This is very useful when you’re trying to combine multiple recurrent layers in
a network.

Imagine you’d like to build a network with two recurrent layers. The second
layer accumulates the output of the first layer, while the first layer
accumulates the input of the network and the output of the second layer (see
figure below).

 digraph feedback_rnn {
node [shape=plaintext,label="(1, 1, 1)"];
x_1; x_2; x_3;

node [shape=plaintext];
h1_0 [label="(0, 0, 0)"]; h1_1 [label="(1, 1, 1)"];
h1_2 [label="(3, 3, 3)"]; h1_3 [label="(8, 8, 8)"];
h2_0 [label="(0, 0, 0)"]; h2_1 [label="(1, 1, 1)"];
h2_2 [label="(4, 4, 4)"]; h2_3 [label="(12, 12, 12)"];

node [shape=diamond,regular=1,label="+"];
plus_1_1; plus_1_2; plus_1_3; plus_2_1; plus_2_2; plus_2_3;

x_1 -> plus_1_1; x_2 -> plus_1_2; x_3 -> plus_1_3;
h1_0 -> plus_1_1 -> h1_1 -> plus_1_2 -> h1_2 -> plus_1_3 -> h1_3;
plus_1_1 -> plus_2_1; plus_1_2 -> plus_2_2; plus_1_3 -> plus_2_3;
h2_0 -> plus_2_1 -> h2_1 -> plus_2_2 -> h2_2 -> plus_2_3 -> h2_3;
h2_0 -> plus_1_1; h2_1 -> plus_1_2; h2_2 -> plus_1_3;

edge [style=invis];
h2_0 -> h1_0; h2_1 -> h1_1; h2_2 -> h1_2;

{ rank=source; h2_0, h2_1, h2_2, h2_3, plus_2_1, plus_2_2, plus_2_3 }
{ rank=same; h1_0, h1_1, h1_2, h1_3, plus_1_1, plus_1_2, plus_1_3 }
{ rank=sink; x_1, x_2, x_3}
}

Here’s how you can create a recurrent brick that encapsulate the two layers:

>>> from blocks.bricks.recurrent import BaseRecurrent, recurrent
>>> class FeedbackRNN(BaseRecurrent):
... def __init__(self, dim, **kwargs):
... super(FeedbackRNN, self).__init__(**kwargs)
... self.dim = dim
... self.first_recurrent_layer = SimpleRecurrent(
... dim=self.dim, activation=Identity(), name='first_recurrent_layer',
... weights_init=initialization.Identity())
... self.second_recurrent_layer = SimpleRecurrent(
... dim=self.dim, activation=Identity(), name='second_recurrent_layer',
... weights_init=initialization.Identity())
... self.children = [self.first_recurrent_layer,
... self.second_recurrent_layer]
...
... @recurrent(sequences=['inputs'], contexts=[],
... states=['first_states', 'second_states'],
... outputs=['first_states', 'second_states'])
... def apply(self, inputs, first_states=None, second_states=None):
... first_h = self.first_recurrent_layer.apply(
... inputs=inputs, states=first_states + second_states, iterate=False)
... second_h = self.second_recurrent_layer.apply(
... inputs=first_h, states=second_states, iterate=False)
... return first_h, second_h
...
... def get_dim(self, name):
... return (self.dim if name in ('inputs', 'first_states', 'second_states')
... else super(FeedbackRNN, self).get_dim(name))
...
>>> x = tensor.tensor3('x')
>>> feedback = FeedbackRNN(dim=3)
>>> feedback.initialize()
>>> first_h, second_h = feedback.apply(inputs=x)
>>> f = theano.function([x], [first_h, second_h])
>>> for states in f(numpy.ones((3, 1, 3), dtype=theano.config.floatX)):
... print(states)
[[[1. 1. 1.]]

 [[3. 3. 3.]]

 [[8. 8. 8.]]]
[[[1. 1. 1.]]

 [[4. 4. 4.]]

 [[12. 12. 12.]]]...

There’s a lot of things going on here!

We defined a recurrent brick class called FeedbackRNN whose constructor
initializes two bricks.recurrent.SimpleRecurrent bricks as its
children.

The class has a get_dim method whose purpose is to tell the dimensionality
of each input to the brick’s apply method.

The core of the class resides in its apply method. The @recurrent
decorator is used to specify which of the arguments to the method are sequences
to iterate over, what is returned when the method is called and which of those
returned values correspond to recurrent states. Its
relationship with the inputs and outputs arguments to the
@application decorator is as follows:

	outputs, like in @application, defines everything that’s returned
by apply, including recurrent outputs

	states is a subset of outputs that corresponds to recurrent outputs,
which means that the union of sequences and states forms what would
be inputs in @application

Notice how no call to theano.scan() [https://theano.readthedocs.io/en/latest/library/scan.html#theano.scan] is being made. This is because the
implementation of apply is responsible for computing one time step of the
recurrent application of the brick. It takes states at time \(t - 1\) and
inputs at time \(t\) and produces the output for time \(t\). The rest is
all handled by the @recurrent decorator behind the scenes.

This is why the iterate argument of the apply method is so useful: it
allows to combine multiple recurrent brick applications within another apply
implementation.

Tip

When looking at a recurrent brick’s documentation, keep in mind that the
parameters to its apply method are explained in terms of a single
iteration, i.e. with the assumption that iterate = False.

See Also

	LSTM implementation: bricks.recurrent.LSTM

	GRU implementation: bricks.recurrent.GatedRecurrent

	Bidirectional RNNs: bricks.recurrent.Bidirectional

	Deep recurrent networks (stacked RNNs):
bricks.recurrent.RecurrentStack

Configuration

Blocks allows module-wide configuration values to be set using a YAML [http://yaml.org/]
configuration file and environment variables [https://en.wikipedia.org/wiki/Environment_variable]. Environment variables
override the configuration file which in its turn overrides the defaults.

The configuration is read from ~/.blocksrc if it exists. A custom
configuration file can be used by setting the BLOCKS_CONFIG environment
variable. A configuration file is of the form:

data_path: /home/user/datasets

If a setting is not configured and does not provide a default, a
ConfigurationError is raised when it is
accessed.

Configuration values can be accessed as attributes of
blocks.config.config.

>>> from blocks.config import config
>>> print(config.default_seed)
1

The following configurations are supported:

	
default_seed

	The seed used when initializing random number generators (RNGs) such as
NumPy RandomState [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState] objects as well as Theano’s
MRG_RandomStreams [https://theano.readthedocs.io/en/latest/library/sandbox/rng_mrg.html#theano.sandbox.rng_mrg.MRG_RandomStreams] objects. Must be an
integer. By default this is set to 1.

	
recursion_limit

	The recursion max depth limit used in
MainLoop as well as in other situations when
deep recursion is required. The most notable example of such a situation
is pickling or unpickling a complex structure with lots of objects, such
as a big Theano computation graph.

	
profile, BLOCKS_PROFILE

	A boolean value which determines whether to print profiling information
at the end of a call to MainLoop.run().

	
log_backend

	The backend to use for logging experiments. Defaults to python, which
stores the log as a Python object in memory. The other option is
sqlite.

	
sqlite_database, BLOCKS_SQLITEDB

	The SQLite database file to use.

	
max_blob_size

	The maximum size of an object to store in an SQLite database in bytes.
Objects beyond this size will trigger a warning. Defaults to 4 kilobyte.

	
temp_dir, BLOCKS_TEMPDIR

	The directory in which Blocks will create temporary files. If
unspecified, the platform-dependent default chosen by the Python
tempfile module is used.

	
class blocks.config.ConfigurationError[source] [https://github.com/mila-udem/blocks/blob/master/blocks/config.py#L85]

	Bases: exceptions.Exception

Error raised when a configuration value is requested but not set.

Create your own brick

This tutorial explains how to create a custom brick, which is useful if you
want to group several specific operations (which can be bricks themselves) into
a single one so that you can easily reuse it.

The first part of this tutorial lists the requirements and optional components
that a brick should/can implement while the second part describes the
construction of a simple toy brick.

This tutorial assumes that you are already familiar with
bricks and how to use them from a user point of view.

Bricks ingredients and recipe

All the bricks in Blocks inherit directly or indirectly from the
Brick. There is already a rich inheritance hierarchy of
bricks implemented in Blocks and thus, you should consider which brick level
to inherit from. Bear in mind that multiple inheritance is often possible and
advocated whenever it makes sense.

Here are examples of possible bricks to inherit from:

	Sequence: a sequence of bricks.

	Initializable: a brick that defines a same initialization scheme
(weights and biases) for all its children.

	Feedforward: declares an interface for bricks with one input and
one output.

	Linear: a linear transformation with optional bias. Inherits from
Initializable and Feedforward.

	BaseRecurrent: the base class for recurrent bricks. Check the
tutorial about rnns for more information.

	many more!

Let’s say that you want to create a brick from scratch, simply inheriting
from Brick, then you should consider overwriting the
following methods (strictly speaking, all these methods are optional, check the
docstring of Brick for a precise description of the
life-cycle of a brick):

	Brick.__init__(): you should pass by argument the attributes of your
brick. It is also in this method that you should create the potential
“children bricks” that belongs to your brick (in that case, you have to pass
the children bricks to super().__init__). The initialization of the
attributes can be lazy as described later in the tutorial.

	apply(): you need to implement a method that actually
implements the operation of the brick, taking as arguments the inputs
of the brick and returning its outputs. It can have any name and for simple
bricks is often named apply. You should decorate it with the
application() decorator, as explained in the next section. If you
design a recurrent brick, you should instead decorate it with the
recurrent() decorator as explained in the
tutorial about rnns.

	Brick._allocate(): you should implement this method to allocate the
shared variables (often representing parameters) of the brick. In Blocks,
by convention, the built-in bricks allocate their shared variables with nan
values and we recommend you to do the same.

	Brick._initialize(): you should implement this method to initialize
the shared variables of your brick. This method is called after the
allocation.

	Brick._push_allocation_config(): you should consider overwriting
this method if you want to change configuration of the children bricks
before they allocate their parameters.

	Brick._push_initialization_config(): you should consider
overwriting this method if you want to change the initialization schemes of
the children before they get initialized.
If the children bricks need to be initialized with the same scheme, then you
should inherit your brick from Initializable, which
automatically pushes the initialization schemes of your brick (provided as
arguments weights_init and biases_init of the constructor) to the
children bricks.

	get_dim(): implementing this function is
useful if you want
to provide a simple way to get the dimensions of the inputs and outputs of
the brick.

If you want to inherit from a specific brick, check its docstring to
identify the particular methods to overwrite and the attributes to define.

Application methods

The apply() method listed above is probably the most
important method of your brick because it is the one that actually takes
theano tensors as inputs, process them and return output tensors. You should
decorate it with the application() decorator, which names variables
and register auxiliary variables of the operation you implement.
It is used as follows:

>>> class Foo(Brick):
... @application(inputs=['input1', 'input2'], outputs=['output'])
... def apply(self, input1, input2):
... y = input1 + input2
... return y

In the case above, it will automatically rename the theano tensor variable
input1 to Foo_apply_input1, input2 to Foo_apply_input2 and the
output of the method to foo_apply_output. It will also add roles and names
to the tag attributes of the variables, as shown below:

>>> foo = Foo()
>>> i1 = tensor.matrix('i1')
>>> i2 = tensor.matrix('i2')
>>> y = foo.apply(i1, i2)
>>> theano.printing.debugprint(y)
Elemwise{identity} [id A] 'foo_apply_output'
 |Elemwise{add,no_inplace} [id B] ''
 |Elemwise{identity} [id C] 'foo_apply_input1'
 | |i1 [id D]
 |Elemwise{identity} [id E] 'foo_apply_input2'
 |i2 [id F]
>>> print(y.name)
foo_apply_output
>>> print(y.tag.name)
output
>>> print(y.tag.roles)
[OUTPUT]

Under the hood, the @application decorator creates an object of class
Application, named apply, which becomes an attribute of the
brick class (by opposition to class instances):

>>> print(type(Foo.apply))
<class 'blocks.bricks.base.Application'>

Application properties

In the previous examples, the names of the arguments of the application methods
were directly provided as arguments of the @application decorator because
they were common to all instances of the classes. On the other hand, if these
names need to be defined differently for particular instances of the class,
you should use the apply.property decorator. Let’s say that we want to
name our attribute inputs with the string self.fancy_name, then we should
write:

>>> class Foo(Brick):
... def __init__(self, fancy_name):
... self.fancy_name = fancy_name
... @application
... def apply(self, input)
... ...
... @apply.property('inputs')
... def apply_inputs(self):
... # Note that you can use any python code to define the name
... return self.fancy_name

Using application calls

You may want to save particular variables defined in the apply method in
order to use them later, for example to monitor them during training. For that,
you need to pass application_call as argument of your apply function
and use the add_auxiliary_variable function to register your variables of
interest, as shown in this example:

>>> class Foo(Brick):
... @application
... def apply(self, x, application_call):
... application_call.add_auxiliary_variable(x.mean())
... return x + 1

add_auxiliary_variable annotates the variable x.mean() as an auxiliary
variable and you can thus later retrieve it with the computational graph
ComputationGraph and filters VariableFilter. In the
case of the Foo Brick defined above, we retrieve x.mean() as follows:

>>> from blocks.graph import ComputationGraph
>>> x = tensor.fmatrix('x')
>>> y = Foo().apply(x)
>>> cg = ComputationGraph(y)
>>> print(cg.auxiliary_variables)
[mean]

Lazy initialization

Instead of forcing the user to provide all the brick attributes as arguments
to the Brick.__init__() method, you could let him/her specify them
later, after the creation of the brick. To enable this mechanism,
called lazy initialization, you need to decorate the constructor with the
lazy() decorator:

>>> @lazy(allocation=['attr1', 'attr2'])
... def __init__(self, attr1, attr1)
... ...

This allows the user to specify attr1 and attr2 after the creation of
the brick. For example, the following ChainOfTwoFeedforward brick is
composed of two Feedforward bricks for which you do not need to
specify the input_dim of brick2 directly at its creation.

>>> class ChainOfTwoFeedforward(Feedforward):
... """Two sequential Feedforward bricks."""
... def __init__(self, brick1, brick2, **kwargs):
... self.brick1 = brick1
... self.brick2 = brick2
... children = [self.brick1, self.brick2]
... kwargs.setdefault('children', []).extend(children)
... super(Feedforward, self).__init__(**kwargs)
...
... @property
... def input_dim(self):
... return self.brick1.input_dim
...
... @input_dim.setter
... def input_dim(self, value):
... self.brick1.input_dim = value
...
... @property
... def output_dim(self):
... return self.brick2.output_dim
...
... @output_dim.setter
... def output_dim(self, value):
... self.brick2.output_dim = value
...
... def _push_allocation_config(self):
... self.brick2.input_dim = self.brick1.get_dim('output')
...
... @application
... def apply(self, x):
... return self.brick2.apply(self.brick1.apply(x))

Note how get_dim is used to retrieve the input_dim of brick1. You
can now use a ChainOfTwoFeedforward brick as follows.

>>> brick1 = Linear(input_dim=3, output_dim=2, use_bias=False,
... weights_init=Constant(2))
>>> brick2 = Linear(output_dim=4, use_bias=False, weights_init=Constant(2))
>>>
>>> seq = ChainOfTwoFeedforward(brick1, brick2)
>>> seq.initialize()
>>> brick2.input_dim
2

Example

For the sake of the tutorial, let’s consider a toy operation that takes two
batch inputs and multiplies them respectively by two matrices, resulting in two
outputs.

The first step is to identify which brick to inherit from. Clearly we are
implementing a variant of the Linear brick. Contrary to
Linear, ours has two inputs and two outputs, which means that we can
not inherit from Feedforward, which requires a single input and a
single output. Our brick will have to manage two shared variables
representing the matrices to multiply the inputs with. As we want to initialize
them with the same scheme, we should inherit from Initializable,
which automatically push the initialization schemes to the children. The
initialization schemes are provided as arguments weights_init
and biases_init of the constructor of our brick (in the kwargs).

>>> class ParallelLinear(Initializable):
... r"""Two linear transformations without biases.
...
... Brick which applies two linear (affine) transformations by
... multiplying its two inputs with two weight matrices, resulting in
... two outputs.
... The two inputs, weights and outputs can have different dimensions.
...
... Parameters
... ----------
... input_dim{1,2} : int
... The dimensions of the two inputs.
... output_dim{1,2} : int
... The dimension of the two outputs.
... """
... @lazy(allocation=['input_dim1', 'input_dim2',
... 'output_dim1', 'output_dim2'])
... def __init__(self, input_dim1, input_dim2, output_dim1, output_dim2,
... **kwargs):
... super(ParallelLinear, self).__init__(**kwargs)
... self.input_dim1 = input_dim1
... self.input_dim2 = input_dim2
... self.output_dim1 = output_dim1
... self.output_dim2 = output_dim2
...
... def __allocate(self, input_dim, output_dim, number):
... W = shared_floatx_nans((input_dim, output_dim),
... name='W'+number)
... add_role(W, WEIGHT)
... self.parameters.append(W)
... self.add_auxiliary_variable(W.norm(2), name='W'+number+'_norm')
...
... def _allocate(self):
... self.__allocate(self.input_dim1, self.output_dim1, '1')
... self.__allocate(self.input_dim2, self.output_dim2, '2')
...
... def _initialize(self):
... W1, W2 = self.parameters
... self.weights_init.initialize(W1, self.rng)
... self.weights_init.initialize(W2, self.rng)
...
... @application(inputs=['input1_', 'input2_'], outputs=['output1',
... 'output2'])
... def apply(self, input1_, input2_):
... """Apply the two linear transformations.
...
... Parameters
... ----------
... input{1,2}_ : :class:`~tensor.TensorVariable`
... The two inputs on which to apply the transformations
...
... Returns
... -------
... output{1,2} : :class:`~tensor.TensorVariable`
... The two inputs multiplied by their respective matrices
...
... """
... W1, W2 = self.parameters
... output1 = tensor.dot(input1_, W1)
... output2 = tensor.dot(input2_, W2)
... return output1, output2
...
... def get_dim(self, name):
... if name == 'input1_':
... return self.input_dim1
... if name == 'input2_':
... return self.input_dim2
... if name == 'output1':
... return self.output_dim1
... if name == 'output2':
... return self.output_dim2
... super(ParallelLinear, self).get_dim(name)

You can test the brick as follows:

>>> input_dim1, input_dim2, output_dim1, output_dim2 = 10, 5, 2, 1
>>> batch_size1, batch_size2 = 1, 2
>>>
>>> x1_mat = 3 * numpy.ones((batch_size1, input_dim1),
... dtype=theano.config.floatX)
>>> x2_mat = 4 * numpy.ones((batch_size2, input_dim2),
... dtype=theano.config.floatX)
>>>
>>> x1 = theano.tensor.matrix('x1')
>>> x2 = theano.tensor.matrix('x2')
>>> parallel1 = ParallelLinear(input_dim1, input_dim2, output_dim1,
... output_dim2, weights_init=Constant(2))
>>> parallel1.initialize()
>>> output1, output2 = parallel1.apply(x1, x2)
>>>
>>> f1 = theano.function([x1, x2], [output1, output2])
>>> f1(x1_mat, x2_mat)
[array([[60., 60.]]...), array([[40.],
 [40.]]...)]

One can also create the brick using Linear children bricks, which

>>> class ParallelLinear2(Initializable):
... def __init__(self, input_dim1, input_dim2, output_dim1, output_dim2,
... **kwargs):
... self.linear1 = Linear(input_dim1, output_dim1,
... use_bias=False, **kwargs)
... self.linear2 = Linear(input_dim2, output_dim2,
... use_bias=False, **kwargs)
... children = [self.linear1, self.linear2]
... kwargs.setdefault('children', []).extend(children)
... super(ParallelLinear2, self).__init__(**kwargs)
...
... @application(inputs=['input1_', 'input2_'], outputs=['output1',
... 'output2'])
... def apply(self, input1_, input2_):
... output1 = self.linear1.apply(input1_)
... output2 = self.linear2.apply(input2_)
... return output1, output2
...
... def get_dim(self, name):
... if name in ['input1_', 'output1']:
... return self.linear1.get_dim(name)
... if name in ['input2_', 'output2']:
... return self.linear2.get_dim(name)
... super(ParallelLinear2, self).get_dim(name)

You can test this new version as follows:

>>> parallel2 = ParallelLinear2(input_dim1, input_dim2, output_dim1,
... output_dim2, weights_init=Constant(2))
>>> parallel2.initialize()
>>> # The weights_init initialization scheme is pushed to the children
>>> # bricks. We can verify it as follows.
>>> w = parallel2.weights_init
>>> w0 = parallel2.children[0].weights_init
>>> w1 = parallel2.children[1].weights_init
>>> print(w == w0 == w1)
True
>>>
>>> output1, output2 = parallel2.apply(x1, x2)
>>>
>>> f2 = theano.function([x1, x2], [output1, output2])
>>> f2(x1_mat, x2_mat)
[array([[60., 60.]]...), array([[40.],
 [40.]]...)]

Actually it was not even necessary to create a custom brick for this particular
operation as Blocks has a brick, called :class:Parallel, which
applies the same prototype brick to several inputs. In our case the prototype
brick we want to apply to our two inputs is a :class:Linear brick with no
bias:

>>> parallel3 = Parallel(
... prototype=Linear(use_bias=False),
... input_names=['input1_', 'input2_'],
... input_dims=[input_dim1, input_dim2],
... output_dims=[output_dim1, output_dim2], weights_init=Constant(2))
>>> parallel3.initialize()
>>>
>>> output1, output2 = parallel3.apply(x1, x2)
>>>
>>> f3 = theano.function([x1, x2], [output1, output2])
>>> f3(x1_mat, x2_mat)
[array([[60., 60.]]...), array([[40.],
 [40.]]...)]

Serialization

The ability to save models and their training progress is important for two
reasons:

	Neural nets can take days or even weeks to train. If training is
interrupted during this time, it is important that we can continue from
where we left off.

	We need the ability to save models in order to share them with others or save
them for later use or inspection.

These two goals come with differing requirements, which is why Blocks
implements a custom serialization approach that tries to meet both needs in the
dump() and load() functions.

Pickling the training loop

Warning

Due to the complexity of serializing a Python objects as large as the main
loop, (un)pickling will sometimes fail because it exceeds the default maximum
recursion depth set in Python. Increasing the limit should fix the problem.

When checkpointing, Blocks pickles the entire main loop,
effectively serializing the exact state of the model as well as the training
state (iteration state, extensions, etc.). Technically there are some
difficulties with this approach:

	Some Python objects cannot be pickled e.g. file handles, generators,
dynamically generated classes, nested classes, etc.

	The pickling of Theano objects can be problematic.

	We do not want to serialize the training data kept in memory, since this can
be prohibitively large.

Blocks addresses these problems by avoiding certain data structures such as
generators and nested classes (see the developer guidelines) and overriding the pickling behaviour of some
objects, making the pickling of the main loop possible.

However, pickling can be problematic for long-term storage of models, because

	Unpickling depends on the libraries used being unchanged. This means that if
you updated Blocks, Theano, etc. to a new version where the interface has
changed, loading your training progress could fail.

	The unpickling of Theano objects can be problematic, especially when
transferring from GPU to CPU or vice versa.

	It is not possible on Python 2 to unpickle objects that were pickled in Python
3.

Parameter saving

This is why Blocks intercepts the pickling of all Theano shared variables (which
includes the parameters), and stores them as separate NPY [http://docs.scipy.org/doc/numpy-dev/neps/npy-format.html] files. The resulting
file is a ZIP archive that contains the pickled main loop as well as a collection
of NumPy arrays. The NumPy arrays (and hence parameters) in the ZIP file can be
read, across platforms, using the numpy.load() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.load.html#numpy.load] function, making it
possible to inspect and load parameter values, even if the unpickling of the
main loop fails.

API Reference

Warning

This API reference is currently nothing but a dump of docstrings, ordered
alphabetically.

The API reference contains detailed descriptions of the different end-user
classes, functions, methods, etc. you will need to work with Blocks.

Note

This API reference only contains end-user documentation. If you are
looking to hack away at Blocks’ internals, you will find more detailed
comments in the source code.

	Algorithms

	Bricks
	Convolutional bricks

	Routing bricks

	Recurrent bricks
	Recurrent architectures

	Helper bricks for recurrent networks

	Base definitions for recurrent bricks

	Attention bricks

	Sequence generators

	Cost bricks

	Wrapper bricks

	Extensions
	Monitoring extensions

	Training

	Serialization

	Filter

	Computational graph

	Parameter initialization

	Logging
	Dictionary backend

	Sqlite backend

	Main loop

	Model

	Variable roles
	Roles

	Brick selectors

	Serialization

	Theano expressions

	Common Utilities

	Theano Utilities

Algorithms

	
class blocks.algorithms.AdaDelta(decay_rate=0.95, epsilon=1e-06)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L537]

	Bases: blocks.algorithms.StepRule

Adapts the step size over time using only first order information.

	Parameters

	
	decay_rate (float [https://docs.python.org/3.4/library/functions.html#float], optional) – Decay rate in [0, 1]. Defaults to 0.95.

	epsilon (float [https://docs.python.org/3.4/library/functions.html#float], optional) – Stabilizing constant for RMS. Defaults to 1e-6.

Notes

For more information, see [ADADELTA].

	ADADELTA

	Matthew D. Zeiler, ADADELTA: An Adaptive Learning
Rate Method, arXiv:1212.5701.

	
compute_step(parameter, previous_step)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L563]

	Build a Theano expression for the step for a parameter.

This method is called by default implementation of
compute_steps(), it relieves from writing a loop each time.

	Parameters

	
	parameter (TensorSharedVariable) – The parameter.

	previous_step (TensorVariable) – Some quantity related to the gradient of the cost with respect
to the parameter, either the gradient itself or a step in a
related direction.

	Returns

	
	step (Variable) – Theano variable for the step to take.

	updates (list) – A list of tuples representing updates to be performed. This
is useful for stateful rules such as Momentum which
need to update shared variables after itetations.

	
class blocks.algorithms.AdaGrad(learning_rate=0.002, epsilon=1e-06)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L794]

	Bases: blocks.algorithms.StepRule

Implements the AdaGrad learning rule.

	Parameters

	
	learning_rate (float [https://docs.python.org/3.4/library/functions.html#float], optional) – Step size.
Default value is set to 0.0002.

	epsilon (float [https://docs.python.org/3.4/library/functions.html#float], optional) – Stabilizing constant for one over root of sum of squares.
Defaults to 1e-6.

Notes

For more information, see [ADAGRAD].

	ADAGRAD

	Duchi J, Hazan E, Singer Y.,
Adaptive subgradient methods for online learning and
stochastic optimization,
http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

	
compute_step(parameter, previous_step)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L822]

	Build a Theano expression for the step for a parameter.

This method is called by default implementation of
compute_steps(), it relieves from writing a loop each time.

	Parameters

	
	parameter (TensorSharedVariable) – The parameter.

	previous_step (TensorVariable) – Some quantity related to the gradient of the cost with respect
to the parameter, either the gradient itself or a step in a
related direction.

	Returns

	
	step (Variable) – Theano variable for the step to take.

	updates (list) – A list of tuples representing updates to be performed. This
is useful for stateful rules such as Momentum which
need to update shared variables after itetations.

	
class blocks.algorithms.Adam(learning_rate=0.002, beta1=0.9, beta2=0.999, epsilon=1e-08, decay_factor=1)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L837]

	Bases: blocks.algorithms.StepRule

Adam optimizer as described in [King2014].

	King2014

	Diederik Kingma, Jimmy Ba,
Adam: A Method for Stochastic Optimization,
http://arxiv.org/abs/1412.6980

	Parameters

	
	learning_rate (float [https://docs.python.org/3.4/library/functions.html#float], optional) – Step size.
Default value is set to 0.002.

	beta1 (float [https://docs.python.org/3.4/library/functions.html#float], optional) – Exponential decay rate for the first moment estimates.
Default value is set to 0.9.

	beta2 (float [https://docs.python.org/3.4/library/functions.html#float], optional) – Exponential decay rate for the second moment estimates.
Default value is set to 0.999.

	epsilon (float [https://docs.python.org/3.4/library/functions.html#float], optional) – Default value is set to 1e-8.

	decay_factor (float [https://docs.python.org/3.4/library/functions.html#float], optional) – Default value is set to 1.

	
compute_step(parameter, previous_step)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L873]

	Build a Theano expression for the step for a parameter.

This method is called by default implementation of
compute_steps(), it relieves from writing a loop each time.

	Parameters

	
	parameter (TensorSharedVariable) – The parameter.

	previous_step (TensorVariable) – Some quantity related to the gradient of the cost with respect
to the parameter, either the gradient itself or a step in a
related direction.

	Returns

	
	step (Variable) – Theano variable for the step to take.

	updates (list) – A list of tuples representing updates to be performed. This
is useful for stateful rules such as Momentum which
need to update shared variables after itetations.

	
class blocks.algorithms.BasicMomentum(momentum=0.0)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L478]

	Bases: blocks.algorithms.StepRule

Accumulates step with exponential discount.

	Parameters

	momentum (float [https://docs.python.org/3.4/library/functions.html#float], optional) – The momentum coefficient. Defaults to 0.

Notes

This step rule is intended to be used in conjunction with another
step rule, _e.g._ Scale. For an all-batteries-included
experience, look at Momentum.

	
compute_step(parameter, previous_step)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L497]

	Build a Theano expression for the step for a parameter.

This method is called by default implementation of
compute_steps(), it relieves from writing a loop each time.

	Parameters

	
	parameter (TensorSharedVariable) – The parameter.

	previous_step (TensorVariable) – Some quantity related to the gradient of the cost with respect
to the parameter, either the gradient itself or a step in a
related direction.

	Returns

	
	step (Variable) – Theano variable for the step to take.

	updates (list) – A list of tuples representing updates to be performed. This
is useful for stateful rules such as Momentum which
need to update shared variables after itetations.

	
class blocks.algorithms.BasicRMSProp(decay_rate=0.9, max_scaling=100000.0)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L589]

	Bases: blocks.algorithms.StepRule

Scales the step size by a running average of the recent step norms.

	Parameters

	
	decay_rate (float [https://docs.python.org/3.4/library/functions.html#float], optional) – How fast the running average decays, value in [0, 1]
(lower is faster). Defaults to 0.9.

	max_scaling (float [https://docs.python.org/3.4/library/functions.html#float], optional) – Maximum scaling of the step size, in case the running average is
really small. Needs to be greater than 0. Defaults to 1e5.

Notes

This step rule is intended to be used in conjunction with another
step rule, _e.g._ Scale. For an all-batteries-included
experience, look at RMSProp.

In general, this step rule should be used _before_ other step rules,
because it has normalization properties that may undo their work.
For instance, it should be applied first when used in conjunction
with Scale.

For more information, see [Hint2014].

	
compute_step(parameter, previous_step)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L624]

	Build a Theano expression for the step for a parameter.

This method is called by default implementation of
compute_steps(), it relieves from writing a loop each time.

	Parameters

	
	parameter (TensorSharedVariable) – The parameter.

	previous_step (TensorVariable) – Some quantity related to the gradient of the cost with respect
to the parameter, either the gradient itself or a step in a
related direction.

	Returns

	
	step (Variable) – Theano variable for the step to take.

	updates (list) – A list of tuples representing updates to be performed. This
is useful for stateful rules such as Momentum which
need to update shared variables after itetations.

	
class blocks.algorithms.CompositeRule(components)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L430]

	Bases: blocks.algorithms.StepRule

Chains several step rules.

	Parameters

	components (list of StepRule) – The learning rules to be chained. The rules will be applied in the
order as given.

	
compute_steps(previous_steps)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L443]

	Build a Theano expression for steps for all parameters.

Override this method if you want to process the steps
with respect to all parameters as a whole, not parameter-wise.

	Parameters

	previous_steps (OrderedDict) – An OrderedDict of
(TensorSharedVariable
TensorVariable) pairs. The keys are the
parameters being trained, the values are the expressions for
quantities related to gradients of the cost with respect to
the parameters, either the gradients themselves or steps in
related directions.

	Returns

	
	steps (OrderedDict) – A dictionary of the proposed steps in the same form as
previous_steps.

	updates (list) – A list of tuples representing updates to be performed.

	
class blocks.algorithms.GradientDescent(cost=None, parameters=None, step_rule=None, gradients=None, known_grads=None, consider_constant=None, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L193]

	Bases: blocks.algorithms.UpdatesAlgorithm

A base class for all gradient descent algorithms.

By “gradient descent” we mean a training algorithm of the following
form:

for batch in data:
 steps = step_rule.compute_steps(parameters,
 gradients_wr_parameters)
 for parameter in parameters:
 parameter -= steps[parameter]

Note, that the step is subtracted, not added! This is done in order
to make step rule chaining possible.

	Parameters

	
	cost (TensorVariable, optional) – The objective to be minimized. Unused if gradients is specified.

	parameters (list of TensorSharedVariable, optional) – The parameters to be tuned. If not provided, inferred from the
keys of gradients (in which case gradients must be an
OrderedDict).

	step_rule (instance of StepRule, optional) – An object encapsulating most of the algorithm’s logic. Its
compute_steps method is called to get Theano expression for
steps. Note, that the step rule might have a state, e.g. to
remember a weighted sum of gradients from previous steps like it is
done in gradient descent with momentum. If None, an instance of
Scale is created.

	gradients (OrderedDict or list of 2-tuples, optional) – A dictionary mapping a parameter to an expression for the cost’s
gradient with respect to the parameter, or equivalently, a list of
(parameter, gradient) tuples. If None, the gradient
are taken automatically using theano.gradient.grad() [https://theano.readthedocs.io/en/latest/library/gradient.html#theano.gradient.grad].

	known_grads (dict [https://docs.python.org/3.4/library/stdtypes.html#dict], optional) – A passthrough to theano.tensor.grad’s known_grads argument.
Useful when you know the [approximate] gradients of some
sub-expressions and would like Theano to use that information
to compute parameter gradients. Only makes sense when gradients
is None.

	consider_constant (list [https://docs.python.org/3.4/library/stdtypes.html#list], optional) – A passthrough to theano.tensor.grad’s consider_constant
argument. A list of expressions through which gradients will not
be backpropagated. Only makes sense when gradients is None.

	
gradients

	OrderedDict – The gradient dictionary.

	
step_rule

	instance of StepRule – The step rule.

Notes

Changing updates attribute or calling add_updates after
the initialize method is called will have no effect.

If a cost and parameters are provided, gradients are taken immediately
upon construction, and changes to these attributes after construction
will have no effect.

gradients must be an OrderedDict if parameters is unspecified
because ordinary dictionaries have an unpredictable iteration
order due to hash randomization (which is enabled by default since
versions 2.7.3 and 3.2.3 of Python). This source of variability,
when combined with Theano’s heuristic graph optimizations, can cause
serious reproducibility issues.

	
class blocks.algorithms.Momentum(learning_rate=1.0, momentum=0.0)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L504]

	Bases: blocks.algorithms.CompositeRule

Accumulates step with exponential discount.

Combines BasicMomentum and Scale to form the
usual momentum step rule.

	Parameters

	
	learning_rate (float [https://docs.python.org/3.4/library/functions.html#float], optional) – The learning rate by which the previous step scaled. Defaults to 1.

	momentum (float [https://docs.python.org/3.4/library/functions.html#float], optional) – The momentum coefficient. Defaults to 0.

	
learning_rate

	SharedVariable – A variable for learning rate.

	
momentum

	SharedVariable – A variable for momentum.

See also

SharedVariableModifier

	
class blocks.algorithms.RMSProp(learning_rate=1.0, decay_rate=0.9, max_scaling=100000.0)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L637]

	Bases: blocks.algorithms.CompositeRule

Scales the step size by a running average of the recent step norms.

Combines BasicRMSProp and Scale to form the step rule
described in [Hint2014].

	Hint2014(1,2)

	Geoff Hinton, Neural Networks for Machine Learning,
lecture 6a,
http://cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

	Parameters

	
	learning_rate (float [https://docs.python.org/3.4/library/functions.html#float], optional) – The learning rate by which the previous step scaled. Defaults to 1.

	decay_rate (float [https://docs.python.org/3.4/library/functions.html#float], optional) – How fast the running average decays (lower is faster).
Defaults to 0.9.

	max_scaling (float [https://docs.python.org/3.4/library/functions.html#float], optional) – Maximum scaling of the step size, in case the running average is
really small. Defaults to 1e5.

	
learning_rate

	SharedVariable – A variable for learning rate.

	
decay_rate

	SharedVariable – A variable for decay rate.

See also

SharedVariableModifier

	
class blocks.algorithms.RemoveNotFinite(scaler=1)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L897]

	Bases: blocks.algorithms.StepRule

A step rule that skips steps with non-finite elements.

Replaces a step (the parameter update of a single shared variable)
which contains non-finite elements (such as inf or NaN) with a
step rescaling the parameters.

	Parameters

	scaler (float [https://docs.python.org/3.4/library/functions.html#float], optional) – The scaling applied to the parameter in case the step contains
non-finite elements. Defaults to 1, which means that parameters
will not be changed.

Notes

This rule should be applied last!

This trick was originally used in the GroundHog [https://github.com/lisa-groundhog/GroundHog] framework.

	
compute_step(parameter, previous_step)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L923]

	Build a Theano expression for the step for a parameter.

This method is called by default implementation of
compute_steps(), it relieves from writing a loop each time.

	Parameters

	
	parameter (TensorSharedVariable) – The parameter.

	previous_step (TensorVariable) – Some quantity related to the gradient of the cost with respect
to the parameter, either the gradient itself or a step in a
related direction.

	Returns

	
	step (Variable) – Theano variable for the step to take.

	updates (list) – A list of tuples representing updates to be performed. This
is useful for stateful rules such as Momentum which
need to update shared variables after itetations.

	
class blocks.algorithms.Restrict(step_rule, variables)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L932]

	Bases: blocks.algorithms.StepRule

Applies a given StepRule only to certain variables.

Example applications include clipping steps on only certain parameters,
or scaling a certain kind of parameter’s updates (e.g. adding an
additional scalar multiplier to the steps taken on convolutional
filters).

	Parameters

	
	step_rule (StepRule) – The StepRule to be applied on the given variables.

	variables (iterable) – A collection of Theano variables on which to apply step_rule.
Variables not appearing in this collection will not have
step_rule applied to them.

	
compute_steps(previous_steps)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L954]

	Build a Theano expression for steps for all parameters.

Override this method if you want to process the steps
with respect to all parameters as a whole, not parameter-wise.

	Parameters

	previous_steps (OrderedDict) – An OrderedDict of
(TensorSharedVariable
TensorVariable) pairs. The keys are the
parameters being trained, the values are the expressions for
quantities related to gradients of the cost with respect to
the parameters, either the gradients themselves or steps in
related directions.

	Returns

	
	steps (OrderedDict) – A dictionary of the proposed steps in the same form as
previous_steps.

	updates (list) – A list of tuples representing updates to be performed.

	
class blocks.algorithms.Scale(learning_rate=1.0)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L452]

	Bases: blocks.algorithms.StepRule

A step in the direction proportional to the previous step.

If used in GradientDescent alone, this step rule implements
steepest descent.

	Parameters

	learning_rate (float [https://docs.python.org/3.4/library/functions.html#float]) – The learning rate by which the previous step is multiplied to
produce the step.

	
learning_rate

	TensorSharedVariable – The shared variable storing the learning rate used.

	
compute_step(parameter, previous_step)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L474]

	Build a Theano expression for the step for a parameter.

This method is called by default implementation of
compute_steps(), it relieves from writing a loop each time.

	Parameters

	
	parameter (TensorSharedVariable) – The parameter.

	previous_step (TensorVariable) – Some quantity related to the gradient of the cost with respect
to the parameter, either the gradient itself or a step in a
related direction.

	Returns

	
	step (Variable) – Theano variable for the step to take.

	updates (list) – A list of tuples representing updates to be performed. This
is useful for stateful rules such as Momentum which
need to update shared variables after itetations.

	
class blocks.algorithms.StepClipping(threshold=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L679]

	Bases: blocks.algorithms.StepRule

Rescales an entire step if its L2 norm exceeds a threshold.

When the previous steps are the gradients, this step rule performs
gradient clipping.

	Parameters

	threshold (float [https://docs.python.org/3.4/library/functions.html#float], optional) – The maximum permitted L2 norm for the step. The step
will be rescaled to be not higher than this quanity.
If None, no rescaling will be applied.

	
threshold

	tensor.TensorSharedVariable – The shared variable storing the clipping threshold used.

	
compute_steps(previous_steps)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L704]

	Build a Theano expression for steps for all parameters.

Override this method if you want to process the steps
with respect to all parameters as a whole, not parameter-wise.

	Parameters

	previous_steps (OrderedDict) – An OrderedDict of
(TensorSharedVariable
TensorVariable) pairs. The keys are the
parameters being trained, the values are the expressions for
quantities related to gradients of the cost with respect to
the parameters, either the gradients themselves or steps in
related directions.

	Returns

	
	steps (OrderedDict) – A dictionary of the proposed steps in the same form as
previous_steps.

	updates (list) – A list of tuples representing updates to be performed.

	
class blocks.algorithms.StepRule[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L365]

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

A rule to compute steps for a gradient descent algorithm.

	
compute_step(parameter, previous_step)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L367]

	Build a Theano expression for the step for a parameter.

This method is called by default implementation of
compute_steps(), it relieves from writing a loop each time.

	Parameters

	
	parameter (TensorSharedVariable) – The parameter.

	previous_step (TensorVariable) – Some quantity related to the gradient of the cost with respect
to the parameter, either the gradient itself or a step in a
related direction.

	Returns

	
	step (Variable) – Theano variable for the step to take.

	updates (list) – A list of tuples representing updates to be performed. This
is useful for stateful rules such as Momentum which
need to update shared variables after itetations.

	
compute_steps(previous_steps)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L394]

	Build a Theano expression for steps for all parameters.

Override this method if you want to process the steps
with respect to all parameters as a whole, not parameter-wise.

	Parameters

	previous_steps (OrderedDict) – An OrderedDict of
(TensorSharedVariable
TensorVariable) pairs. The keys are the
parameters being trained, the values are the expressions for
quantities related to gradients of the cost with respect to
the parameters, either the gradients themselves or steps in
related directions.

	Returns

	
	steps (OrderedDict) – A dictionary of the proposed steps in the same form as
previous_steps.

	updates (list) – A list of tuples representing updates to be performed.

	
class blocks.algorithms.TrainingAlgorithm[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L32]

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

Base class for training algorithms.

A training algorithm object has a simple life-cycle.
First it is initialized by calling its initialize() method.
At this stage, for instance, Theano functions can be compiled.
After that the process_batch() method is repeatedly
called with a batch of training data as a parameter.

	
initialize(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L42]

	Initialize the training algorithm.

	
process_batch(batch)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L47]

	Process a batch of training data.

	
batch

	dict – A dictionary of (source name, data) pairs.

	
class blocks.algorithms.UpdatesAlgorithm(updates=None, theano_func_kwargs=None, on_unused_sources='raise', **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L89]

	Bases: blocks.algorithms.TrainingAlgorithm

Base class for algorithms that use Theano functions with updates.

	Parameters

	
	updates (list of tuples or OrderedDict [https://docs.python.org/3.4/library/collections.html#collections.OrderedDict]) – The updates that should be performed.

	theano_func_kwargs (dict [https://docs.python.org/3.4/library/stdtypes.html#dict], optional) – A passthrough to theano.function for additional arguments.
Useful for passing profile or mode arguments to the theano
function that will be compiled for the algorithm.

	on_unused_sources (str [https://docs.python.org/3.4/library/stdtypes.html#str], one of 'raise' (default), 'ignore', 'warn') – Controls behavior when not all sources in a batch are used
(i.e. there is no variable with a matching name in the inputs
of the computational graph of the updates).

	
updates

	list of TensorSharedVariable updates – Updates to be done for every batch. It is required that the
updates are done using the old values of optimized parameters.

Notes

Changing updates attribute or calling add_updates after
the initialize method is called will have no effect.

	
add_updates(updates)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L143]

	Add updates to the training process.

The updates will be done _before_ the parameters are changed.

	Parameters

	updates (list of tuples or OrderedDict [https://docs.python.org/3.4/library/collections.html#collections.OrderedDict]) – The updates to add.

	
initialize()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L125]

	Initialize the training algorithm.

	
process_batch(batch)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L187]

	Process a batch of training data.

	
batch

	dict – A dictionary of (source name, data) pairs.

	
updates

	

	
class blocks.algorithms.VariableClipping(threshold, axis=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L717]

	Bases: blocks.algorithms.StepRule

Clip the maximum norm of individual variables along certain axes.

This StepRule can be used to implement L2 norm constraints on
e.g. the weight vectors of individual hidden units, convolutional
filters or entire weight tensors. Combine with Restrict
(and possibly CompositeRule), to apply such constraints only
to certain variables and/or apply different norm constraints to
different variables.

	Parameters

	
	threshold (float [https://docs.python.org/3.4/library/functions.html#float]) – Maximum norm for a given (portion of a) tensor.

	axis (int [https://docs.python.org/3.4/library/functions.html#int] or iterable, optional) – An integer single axis, or an iterable collection of integer
axes over which to sum in order to calculate the L2 norm. If
None (the default), the norm is computed over all elements
of the tensor.

Notes

Because of the way the StepRule API works, this particular
rule implements norm clipping of the value after update in the
following way: it computes parameter - previous_step, scales it
to have (possibly axes-wise) norm(s) of at most threshold,
then subtracts that value from parameter to yield an ‘equivalent
step’ that respects the desired norm constraints. This procedure
implicitly assumes one is doing simple (stochastic) gradient descent,
and so steps computed by this step rule may not make sense for use
in other contexts.

Investigations into max-norm regularization date from [Srebro2005].
The first appearance of this technique as a regularization method
for the weight vectors of individual hidden units in feed-forward
neural networks may be [Hinton2012].

	Srebro2005

	Nathan Srebro and Adi Shraibman.
“Rank, Trace-Norm and Max-Norm”. 18th Annual Conference
on Learning Theory (COLT), June 2005.

	Hinton2012

	Geoffrey E. Hinton, Nitish Srivastava,
Alex Krizhevsky, Ilya Sutskever, Ruslan R. Salakhutdinov.
“Improving neural networks by preventing co-adaptation of
feature detectors”. arXiv:1207.0580.

	
compute_step(parameter, previous_step)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/algorithms/__init__.py#L772]

	Build a Theano expression for the step for a parameter.

This method is called by default implementation of
compute_steps(), it relieves from writing a loop each time.

	Parameters

	
	parameter (TensorSharedVariable) – The parameter.

	previous_step (TensorVariable) – Some quantity related to the gradient of the cost with respect
to the parameter, either the gradient itself or a step in a
related direction.

	Returns

	
	step (Variable) – Theano variable for the step to take.

	updates (list) – A list of tuples representing updates to be performed. This
is useful for stateful rules such as Momentum which
need to update shared variables after itetations.

Bricks

	Convolutional bricks

	Routing bricks

	Recurrent bricks

	Attention bricks

	Sequence generators

	Cost bricks

	
blocks.bricks.application(*args, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L916]

	Decorator for methods that apply a brick to inputs.

	Parameters

	
	optional (**kwargs,) – The application method to wrap.

	optional – Attributes to attach to this application.

Notes

This decorator replaces application methods with Application
instances. It also sets the attributes given as keyword arguments to
the decorator.

Note that this decorator purposely does not wrap the original method
using e.g. wraps() [https://docs.python.org/3.4/library/functools.html#functools.wraps] or
update_wrapper() [https://docs.python.org/3.4/library/functools.html#functools.update_wrapper], since that would make the class
impossible to pickle (see notes at Application).

Examples

>>> class Foo(Brick):
... @application(inputs=['x'], outputs=['y'])
... def apply(self, x):
... return x + 1
... @application
... def other_apply(self, x):
... return x - 1
>>> foo = Foo()
>>> Foo.apply.inputs
['x']
>>> foo.apply.outputs
['y']
>>> Foo.other_apply
<blocks.bricks.base.Application object at ...>

	
class blocks.bricks.Brick(name=None, children=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L409]

	Bases: blocks.graph.annotations.Annotation

A brick encapsulates Theano operations with parameters.

A brick goes through the following stages:

	Construction: The call to __init__() constructs a
Brick instance with a name and creates any child bricks as
well.

	Allocation of parameters:

	Allocation configuration of children: The
push_allocation_config() method configures any children of
this block.

	Allocation: The allocate() method allocates the shared
Theano variables required for the parameters. Also allocates
parameters for all children.

	The following can be done in either order:

	Application: By applying the brick to a set of Theano
variables a part of the computational graph of the final model is
constructed.

	The initialization of parameters:

	Initialization configuration of children: The
push_initialization_config() method configures any
children of this block.

	Initialization: This sets the initial values of the
parameters by a call to initialize(), which is needed
to call the final compiled Theano function. Also initializes
all children.

Not all stages need to be called explicitly. Step 3(a) will
automatically allocate the parameters if needed. Similarly, step
3(b.2) and 2(b) will automatically perform steps 3(b.1) and 2(a) if
needed. They only need to be called separately if greater control is
required. The only two methods which always need to be called are an
application method to construct the computational graph, and the
initialize() method in order to initialize the parameters.

At each different stage, a brick might need a certain set of
configuration settings. All of these settings can be passed to the
__init__() constructor. However, by default many bricks support
lazy initialization. This means that the configuration settings can
be set later.

Note

Some arguments to __init__() are always required, even when
lazy initialization is enabled. Other arguments must be given before
calling allocate(), while others yet only need to be given in
order to call initialize(). Always read the documentation of
each brick carefully.

Lazy initialization can be turned off by setting Brick.lazy =
False. In this case, there is no need to call initialize()
manually anymore, but all the configuration must be passed to the
__init__() method.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str], optional) – The name of this brick. This can be used to filter the application
of certain modifications by brick names. By default, the brick
receives the name of its class (lowercased).

	
name

	str – The name of this brick.

	
print_shapes

	bool – False by default. If True it logs the shapes of all the
input and output variables, which can be useful for debugging.

	
parameters

	list of TensorSharedVariable and None – After calling the allocate() method this attribute will be
populated with the shared variables storing this brick’s
parameters. Allows for None so that parameters can always be
accessed at the same index, even if some parameters are only
defined given a particular configuration.

	
children

	list of bricks – The children of this brick.

	
allocated

	bool – False if allocate() has not been called yet. True
otherwise.

	
initialized

	bool – False if allocate() has not been called yet. True
otherwise.

	
allocation_config_pushed

	bool – False if allocate() or push_allocation_config()
hasn’t been called yet. True otherwise.

	
initialization_config_pushed

	bool – False if initialize() or
push_initialization_config() hasn’t been called yet. True
otherwise.

Notes

To provide support for lazy initialization, apply the lazy()
decorator to the __init__() method.

Brick implementations must call the __init__() constructor of
their parent using super(BlockImplementation,
self).__init__(**kwargs) at the beginning of the overriding
__init__.

The methods _allocate() and _initialize() need to be
overridden if the brick needs to allocate shared variables and
initialize their values in order to function.

A brick can have any number of methods which apply the brick on Theano
variables. These methods should be decorated with the
application() decorator.

If a brick has children, they must be listed in the children
attribute. Moreover, if the brick wants to control the configuration of
its children, the _push_allocation_config() and
_push_initialization_config() methods need to be overridden.

Examples

Most bricks have lazy initialization enabled.

>>> import theano
>>> from blocks.initialization import IsotropicGaussian, Constant
>>> from blocks.bricks import Linear
>>> linear = Linear(input_dim=5, output_dim=3,
... weights_init=IsotropicGaussian(),
... biases_init=Constant(0))
>>> x = theano.tensor.vector()
>>> linear.apply(x) # Calls linear.allocate() automatically
linear_apply_output
>>> linear.initialize() # Initializes the weight matrix

	
allocate()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L582]

	Allocate shared variables for parameters.

Based on the current configuration of this Brick create
Theano shared variables to store the parameters. After allocation,
parameters are accessible through the parameters attribute.

This method calls the allocate() method of all children
first, allowing the _allocate() method to override the
parameters of the children if needed.

	Raises

	ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] – If the configuration of this brick is insufficient to determine
the number of parameters or their dimensionality to be
initialized.

Notes

This method sets the parameters attribute to an empty list.
This is in order to ensure that calls to this method completely
reset the parameters.

	
children

	

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L737]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
get_dims(names)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L749]

	Get list of dimensions for a set of input/output variables.

	Parameters

	names (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – The variable names.

	Returns

	dims – The dimensions of the sources.

	Return type

	list [https://docs.python.org/3.4/library/stdtypes.html#list]

	
get_hierarchical_name(parameter, delimiter='/')[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L773]

	Return hierarhical name for a parameter.

Returns a path of the form brick1/brick2/brick3.parameter1. The
delimiter is configurable.

	Parameters

	delimiter (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The delimiter used to separate brick names in the path.

	
get_unique_path()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L765]

	Returns unique path to this brick in the application graph.

	
initialize()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L634]

	Initialize parameters.

Intialize parameters, such as weight matrices and biases.

Notes

If the brick has not allocated its parameters yet, this method will
call the allocate() method in order to do so.

	
parameters

	

	
print_shapes = False

	See Brick.print_shapes

	
push_allocation_config()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L673]

	Push the configuration for allocation to child bricks.

Bricks can configure their children, based on their own current
configuration. This will be automatically done by a call to
allocate(), but if you want to override the configuration of
child bricks manually, then you can call this function manually.

	
push_initialization_config()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L705]

	Push the configuration for initialization to child bricks.

Bricks can configure their children, based on their own current
configuration. This will be automatically done by a call to
initialize(), but if you want to override the configuration
of child bricks manually, then you can call this function manually.

	
blocks.bricks.lazy(allocation=None, initialization=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L815]

	Makes the initialization lazy.

This decorator allows the user to define positional arguments which
will not be needed until the allocation or initialization stage of the
brick. If these arguments are not passed, it will automatically replace
them with a custom None object. It is assumed that the missing
arguments can be set after initialization by setting attributes with
the same name.

	Parameters

	
	allocation (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – A list of argument names that are needed for allocation.

	initialization (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – A list of argument names that are needed for initialization.

Examples

>>> class SomeBrick(Brick):
... @lazy(allocation=['a'], initialization=['b'])
... def __init__(self, a, b, c='c', d=None):
... print(a, b, c, d)
>>> brick = SomeBrick('a')
a NoneInitialization c None
>>> brick = SomeBrick(d='d', b='b')
NoneAllocation b c d

	
class blocks.bricks.BatchNormalization(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/bn.py#L37]

	Bases: blocks.bricks.interfaces.RNGMixin, blocks.bricks.interfaces.Feedforward

Normalizes activations, parameterizes a scale and shift.

	Parameters

	
	input_dim (int [https://docs.python.org/3.4/library/functions.html#int] or tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – Shape of a single input example. It is assumed that a batch axis
will be prepended to this.

	broadcastable (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple], optional) – Tuple of the same length as input_dim which specifies which of
the per-example axes should be averaged over to compute means and
standard deviations. For example, in order to normalize over all
spatial locations in a (batch_index, channels, height, width)
image, pass (False, True, True). The batch axis is always
averaged out.

	conserve_memory (bool [https://docs.python.org/3.4/library/functions.html#bool], optional) – Use an implementation that stores less intermediate state and
therefore uses less memory, at the expense of 5-10% speed. Default
is True.

	epsilon (float [https://docs.python.org/3.4/library/functions.html#float], optional) – The stabilizing constant for the minibatch standard deviation
computation (when the brick is run in training mode).
Added to the variance inside the square root, as in the
batch normalization paper.

	scale_init (object [https://docs.python.org/3.4/library/functions.html#object], optional) – Initialization object to use for the learned scaling parameter
(γ in [BN]). By default, uses constant initialization
of 1.

	shift_init (object [https://docs.python.org/3.4/library/functions.html#object], optional) – Initialization object to use for the learned shift parameter
(β in [BN]). By default, uses constant initialization of 0.

	mean_only (bool [https://docs.python.org/3.4/library/functions.html#bool], optional) – Perform “mean-only” batch normalization as described in [SK2016].

	learn_scale (bool [https://docs.python.org/3.4/library/functions.html#bool], optional) – Whether to include a learned scale parameter (γ in [BN])
in this brick. Default is True. Has no effect if mean_only is
True (i.e. a scale parameter is never learned in mean-only mode).

	learn_shift (bool [https://docs.python.org/3.4/library/functions.html#bool], optional) – Whether to include a learned shift parameter (β in [BN])
in this brick. Default is True.

Notes

In order for trained models to behave sensibly immediately upon
upon deserialization, by default, this brick runs in inference mode,
using a population mean and population standard deviation (initialized
to zeros and ones respectively) to normalize activations. It is
expected that the user will adapt these during training in some
fashion, independently of the training objective, e.g. by taking a
moving average of minibatch-wise statistics.

In order to train with batch normalization, one must obtain a
training graph by transforming the original inference graph. See
apply_batch_normalization() for a routine to
transform graphs, and batch_normalization()
for a context manager that may enable shorter compile times
(every instance of BatchNormalization is itself a context
manager, entry into which causes applications to be in minibatch
“training” mode, however it is usually more convenient to use
batch_normalization() to enable this behaviour
for all of your graph’s BatchNormalization bricks at once).

Note that training in inference mode should be avoided, as this
brick introduces scales and shift parameters (tagged with the
PARAMETER role) that, in the absence of batch normalization,
usually makes things unstable. If you must do this, filter for and
remove BATCH_NORM_SHIFT_PARAMETER and BATCH_NORM_SCALE_PARAMETER
from the list of parameters you are training, and this brick should
behave as a (somewhat expensive) no-op.

This Brick accepts scale_init and shift_init arguments but is
not an instance of Initializable, and will
therefore not receive pushed initialization config from any parent
brick. In almost all cases, you will probably want to stick with the
defaults (unit scale and zero offset), but you can explicitly pass one
or both initializers to override this.

This has the necessary properties to be inserted into a
blocks.bricks.conv.ConvolutionalSequence as-is, in which case
the input_dim should be omitted at construction, to be inferred from
the layer below.

	BN(1,2,3,4)

	Sergey Ioffe and Christian Szegedy. Batch normalization:
accelerating deep network training by reducing internal covariate
shift. ICML (2015), pp. 448-456.

	SK2016

	Tim Salimans and Diederik P. Kingma. Weight
normalization: a simple reparameterization to accelerate training
of deep neural networks. arXiv 1602.07868.

	
apply

	

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/bn.py#L319]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
image_size

	

	
normalization_axes

	

	
num_channels

	

	
num_output_channels

	

	
output_dim

	

	
class blocks.bricks.SpatialBatchNormalization(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/bn.py#L330]

	Bases: blocks.bricks.bn.BatchNormalization

Convenient subclass for batch normalization across spatial inputs.

	Parameters

	input_dim (int [https://docs.python.org/3.4/library/functions.html#int] or tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – The input size of a single example. Must be length at least 2.
It’s assumed that the first axis of this tuple is a “channels”
axis, which should not be summed over, and all remaining
dimensions are spatial dimensions.

Notes

See BatchNormalization for more details (and additional
keyword arguments).

	
class blocks.bricks.BatchNormalizedMLP(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/bn.py#L356]

	Bases: blocks.bricks.sequences.MLP

Convenient subclass for building an MLP with batch normalization.

	Parameters

	
	conserve_memory (bool [https://docs.python.org/3.4/library/functions.html#bool], optional, by keyword only) – See BatchNormalization.

	mean_only (bool [https://docs.python.org/3.4/library/functions.html#bool], optional, by keyword only) – See BatchNormalization.

	learn_scale (bool [https://docs.python.org/3.4/library/functions.html#bool], optional, by keyword only) – See BatchNormalization.

	learn_shift (bool [https://docs.python.org/3.4/library/functions.html#bool], optional, by keyword only) – See BatchNormalization.

Notes

All other parameters are the same as MLP. Each
activation brick is wrapped in a Sequence
containing an appropriate BatchNormalization brick and
the activation that follows it.

By default, the contained Linear bricks will
not contain any biases, as they could be canceled out by the biases
in the BatchNormalization bricks being added. Pass
use_bias with a value of True if you really want this for some
reason.

mean_only, learn_scale and learn_shift are pushed down to
all created BatchNormalization bricks as allocation
config.

	
conserve_memory

	Conserve memory.

	
class blocks.bricks.Feedforward(name=None, children=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/interfaces.py#L51]

	Bases: blocks.bricks.base.Brick

Declares an interface for bricks with one input and one output.

Many bricks have just one input and just one output (activations,
Linear, MLP). To make such bricks interchangable
in most contexts they should share an interface for configuring
their input and output dimensions. This brick declares such an
interface.

	
input_dim

	int – The input dimension of the brick.

	
output_dim

	int – The output dimension of the brick.

	
class blocks.bricks.Initializable(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/interfaces.py#L109]

	Bases: blocks.bricks.interfaces.RNGMixin, blocks.bricks.base.Brick

Base class for bricks which push parameter initialization.

Many bricks will initialize children which perform a linear
transformation, often with biases. This brick allows the weights
and biases initialization to be configured in the parent brick and
pushed down the hierarchy.

	Parameters

	
	weights_init (object [https://docs.python.org/3.4/library/functions.html#object]) – A NdarrayInitialization instance which will be used by to
initialize the weight matrix. Required by
initialize().

	biases_init (object [https://docs.python.org/3.4/library/functions.html#object], optional) – A NdarrayInitialization instance that will be used to initialize
the biases. Required by initialize() when use_bias
is True. Only supported by bricks for which has_biases is
True.

	use_bias (bool [https://docs.python.org/3.4/library/functions.html#bool], optional) – Whether to use a bias. Defaults to True. Required by
initialize(). Only supported by bricks for which
has_biases is True.

	rng (numpy.random.RandomState [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState]) –

	
has_biases

	bool – False if the brick does not support biases, and only has
weights_init. For an example of this, see
Bidirectional. If this is False, the brick does not
support the arguments biases_init or use_bias.

	
has_biases = True

	

	
class blocks.bricks.LinearLike(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/interfaces.py#L171]

	Bases: blocks.bricks.interfaces.Initializable

Initializable subclass with logic for Linear-like classes.

Notes

Provides W and b properties that can be overridden in subclasses
to implement pre-application transformations on the weights and
biases. Application methods should refer to self.W and self.b
rather than accessing the parameters list directly.

This assumes a layout of the parameters list with the weights coming
first and biases (if use_bias is True) coming second.

	
W

	

	
b

	

	
class blocks.bricks.Random(theano_seed=None, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/interfaces.py#L204]

	Bases: blocks.bricks.base.Brick

A mixin class for Bricks which need Theano RNGs.

	Parameters

	theano_seed (int [https://docs.python.org/3.4/library/functions.html#int] or list [https://docs.python.org/3.4/library/stdtypes.html#list], optional) – Seed to use for a
MRG_RandomStreams [https://theano.readthedocs.io/en/latest/library/sandbox/rng_mrg.html#theano.sandbox.rng_mrg.MRG_RandomStreams] object.

	
seed_rng = <mtrand.RandomState object>

	

	
theano_rng

	Returns Brick’s Theano RNG, or a default one.

The default seed can be set through blocks.config.

	
theano_seed

	

	
class blocks.bricks.Linear(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/simple.py#L17]

	Bases: blocks.bricks.interfaces.LinearLike, blocks.bricks.interfaces.Feedforward

A linear transformation with optional bias.

Brick which applies a linear (affine) transformation by multiplying
the input with a weight matrix. By default, a bias term is added
(see Initializable for information on disabling this).

	Parameters

	
	input_dim (int [https://docs.python.org/3.4/library/functions.html#int]) – The dimension of the input. Required by allocate().

	output_dim (int [https://docs.python.org/3.4/library/functions.html#int]) – The dimension of the output. Required by allocate().

Notes

See Initializable for initialization parameters.

A linear transformation with bias is a matrix multiplication followed
by a vector summation.

\[f(\mathbf{x}) = \mathbf{W}\mathbf{x} + \mathbf{b}\]

	
apply

	Apply the linear transformation.

	Parameters

	input (TensorVariable) – The input on which to apply the transformation

	Returns

	output – The transformed input plus optional bias

	Return type

	TensorVariable

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/simple.py#L78]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
class blocks.bricks.Bias(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/simple.py#L86]

	Bases: blocks.bricks.interfaces.Feedforward, blocks.bricks.interfaces.Initializable

Add a bias (i.e. sum with a vector).

	
apply

	Apply the linear transformation.

	Parameters

	input (TensorVariable) – The input on which to apply the transformation

	Returns

	output – The transformed input plus optional bias

	Return type

	TensorVariable

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/simple.py#L120]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
input_dim

	

	
output_dim

	

	
class blocks.bricks.Maxout(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/simple.py#L134]

	Bases: blocks.bricks.base.Brick

Maxout pooling transformation.

A brick that does max pooling over groups of input units. If you use
this code in a research project, please cite [GWFM13].

	GWFM13

	Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron
Courville, and Yoshua Bengio, Maxout networks, ICML (2013), pp.
1319-1327.

	Parameters

	num_pieces (int [https://docs.python.org/3.4/library/functions.html#int]) – The size of the groups the maximum is taken over.

Notes

Maxout applies a set of linear transformations to a vector and selects
for each output dimension the result with the highest value.

	
apply

	Apply the maxout transformation.

	Parameters

	input (TensorVariable) – The input on which to apply the transformation

	Returns

	output – The transformed input

	Return type

	TensorVariable

	
class blocks.bricks.LinearMaxout(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/simple.py#L184]

	Bases: blocks.bricks.interfaces.Initializable, blocks.bricks.interfaces.Feedforward

Maxout pooling following a linear transformation.

This code combines the Linear brick with a Maxout
brick.

	Parameters

	
	input_dim (int [https://docs.python.org/3.4/library/functions.html#int]) – The dimension of the input. Required by allocate().

	output_dim (int [https://docs.python.org/3.4/library/functions.html#int]) – The dimension of the output. Required by allocate().

	num_pieces (int [https://docs.python.org/3.4/library/functions.html#int]) – The number of linear functions. Required by
allocate().

Notes

See Initializable for initialization parameters.

	
apply

	Apply the linear transformation followed by maxout.

	Parameters

	input (TensorVariable) – The input on which to apply the transformations

	Returns

	output – The transformed input

	Return type

	TensorVariable

	
input_dim

	

	
class blocks.bricks.Identity(name=None, children=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/simple.py#L249]

	Bases: blocks.bricks.interfaces.Activation

Elementwise application of identity function.

	
apply

	Apply the identity function element-wise.

	Parameters

	input (TensorVariable) – Theano variable to apply identity to, element-wise.

	Returns

	output – The input with the activation function applied.

	Return type

	TensorVariable

	
class blocks.bricks.Tanh(name=None, children=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/simple.py#L255]

	Bases: blocks.bricks.interfaces.Activation

Elementwise application of tanh function.

	
apply

	Apply the tanh function element-wise.

	Parameters

	input (TensorVariable) – Theano variable to apply tanh to, element-wise.

	Returns

	output – The input with the activation function applied.

	Return type

	TensorVariable

	
class blocks.bricks.Logistic(name=None, children=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/simple.py#L261]

	Bases: blocks.bricks.interfaces.Activation

Elementwise application of logistic function.

	
apply

	Apply the logistic function element-wise.

	Parameters

	input (TensorVariable) – Theano variable to apply logistic to, element-wise.

	Returns

	output – The input with the activation function applied.

	Return type

	TensorVariable

	
class blocks.bricks.Softplus(name=None, children=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/simple.py#L267]

	Bases: blocks.bricks.interfaces.Activation

Elementwise application of softplus function.

	
apply

	Apply the softplus function element-wise.

	Parameters

	input (TensorVariable) – Theano variable to apply softplus to, element-wise.

	Returns

	output – The input with the activation function applied.

	Return type

	TensorVariable

	
class blocks.bricks.Rectifier(name=None, children=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/simple.py#L282]

	Bases: blocks.bricks.interfaces.Activation

Elementwise application of rectifier function.

	
apply

	Apply the rectifier function element-wise.

	Parameters

	input (TensorVariable) – Theano variable to apply rectifier to, element-wise.

	Returns

	output – The input with the activation function applied.

	Return type

	TensorVariable

	
class blocks.bricks.LeakyRectifier(leak=0.01, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/simple.py#L288]

	Bases: blocks.bricks.interfaces.Activation

Elementwise application of leakyrectifier function.

	
apply

	Apply the leakyrectifier function element-wise.

	Parameters

	input (TensorVariable) – Theano variable to apply leakyrectifier to, element-wise.

	Returns

	output – The input with the activation function applied.

	Return type

	TensorVariable

	
class blocks.bricks.Softmax(name=None, children=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/simple.py#L315]

	Bases: blocks.bricks.base.Brick

A softmax brick.

Works with 2-dimensional inputs only. If you need more,
see NDimensionalSoftmax.

	
apply

	Standard softmax.

	Parameters

	input (Variable) – A matrix, each row contains unnormalized log-probabilities of a
distribution.

	Returns

	output_ – A matrix with probabilities in each row for each distribution
from input_.

	Return type

	Variable

	
categorical_cross_entropy

	Computationally stable cross-entropy for pre-softmax values.

	Parameters

	
	y (TensorVariable) – In the case of a matrix argument, each row represents a
probabilility distribution. In the vector case, each element
represents a distribution by specifying the position of 1 in a
1-hot vector.

	x (TensorVariable) – A matrix, each row contains unnormalized probabilities of a
distribution.

	Returns

	cost – A vector of cross-entropies between respective distributions
from y and x.

	Return type

	TensorVariable

	
log_probabilities

	Normalize log-probabilities.

Converts unnormalized log-probabilities (exponents of which do not
sum to one) into actual log-probabilities (exponents of which sum
to one).

	Parameters

	input (Variable) – A matrix, each row contains unnormalized log-probabilities of a
distribution.

	Returns

	output – A matrix with normalized log-probabilities in each row for each
distribution from input_.

	Return type

	Variable

	
class blocks.bricks.NDimensionalSoftmax(name=None, children=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/simple.py#L401]

	Bases: blocks.bricks.simple.Softmax

A wrapped brick class.

This brick was automatically constructed by wrapping Softmax with
WithExtraDims.

See also

	BrickWrapper

	For explanation of brick wrapping.

Softmax
WithExtraDims

	
apply

	Wraps the application method with reshapes.

	Parameters

	extra_ndim (int [https://docs.python.org/3.4/library/functions.html#int], optional) – The number of extra dimensions. Default is zero.

See also

	Softmax.apply()

	For documentation of the wrapped application method.

	
apply_delegate()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/wrappers.py#L162]

	

	
categorical_cross_entropy

	Wraps the application method with reshapes.

	Parameters

	extra_ndim (int [https://docs.python.org/3.4/library/functions.html#int], optional) – The number of extra dimensions. Default is zero.

See also

	Softmax.categorical_cross_entropy()

	For documentation of the wrapped application method.

	
categorical_cross_entropy_delegate()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/wrappers.py#L162]

	

	
decorators = [<blocks.bricks.wrappers.WithExtraDims object>]

	

	
log_probabilities

	Wraps the application method with reshapes.

	Parameters

	extra_ndim (int [https://docs.python.org/3.4/library/functions.html#int], optional) – The number of extra dimensions. Default is zero.

See also

	Softmax.log_probabilities()

	For documentation of the wrapped application method.

	
log_probabilities_delegate()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/wrappers.py#L162]

	

	
class blocks.bricks.Sequence(application_methods, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequences.py#L12]

	Bases: blocks.bricks.base.Brick

A sequence of bricks.

This brick applies a sequence of bricks, assuming that their in- and
outputs are compatible.

	Parameters

	application_methods (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – List of BoundApplication or Brick to apply.
For Brick`s, the `.apply`` method is used.

	
apply

	

	
apply_inputs()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequences.py#L40]

	

	
apply_outputs()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequences.py#L44]

	

	
class blocks.bricks.FeedforwardSequence(application_methods, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequences.py#L49]

	Bases: blocks.bricks.sequences.Sequence, blocks.bricks.interfaces.Feedforward

A sequence where the first and last bricks are feedforward.

	Parameters

	application_methods (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – List of BoundApplication to apply. The first and last
application method should belong to a Feedforward brick.

	
input_dim

	

	
output_dim

	

	
class blocks.bricks.MLP(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequences.py#L76]

	Bases: blocks.bricks.sequences.FeedforwardSequence, blocks.bricks.interfaces.Initializable

A simple multi-layer perceptron.

	Parameters

	
	activations (list of Brick, BoundApplication,) – or None
A list of activations to apply after each linear transformation.
Give None to not apply any activation. It is assumed that the
application method to use is apply. Required for
__init__().

	dims (list of ints) – A list of input dimensions, as well as the output dimension of the
last layer. Required for allocate().

	prototype (Brick, optional) – The transformation prototype. A copy will be created for every
activation. If not provided, an instance of Linear
will be used.

Notes

See Initializable for initialization parameters.

Note that the weights_init, biases_init (as well as
use_bias if set to a value other than the default of None)
configurations will overwrite those of the layers each time the
MLP is re-initialized. For more fine-grained control, push the
configuration to the child layers manually before initialization.

>>> from blocks.bricks import Tanh
>>> from blocks.initialization import IsotropicGaussian, Constant
>>> mlp = MLP(activations=[Tanh(), None], dims=[30, 20, 10],
... weights_init=IsotropicGaussian(),
... biases_init=Constant(1))
>>> mlp.push_initialization_config() # Configure children
>>> mlp.children[0].weights_init = IsotropicGaussian(0.1)
>>> mlp.initialize()

	
input_dim

	

	
output_dim

	

	
class blocks.bricks.WithExtraDims[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/wrappers.py#L101]

	Bases: blocks.bricks.wrappers.BrickWrapper

Wraps a brick’s applications to handle inputs with extra dimensions.

A brick can be often reused even when data has more dimensions
than in the default setting. An example is a situation when one wants
to apply categorical_cross_entropy()
to temporal data, that is when an additional ‘time’ axis is prepended
to its both x and y inputs.

This wrapper adds reshapes required to use application
methods of a brick with such data by merging the extra dimensions
with the first non-extra one. Two key assumptions
are made: that all inputs and outputs have the same number of extra
dimensions and that these extra dimensions are equal throughout
all inputs and outputs.

While this might be inconvinient, the wrapped brick does not try to
guess the number of extra dimensions, but demands it as an argument.
The considerations of simplicity and reliability motivated this design
choice. Upon availability in Blocks of a mechanism to request the
expected number of dimensions for an input of a brick, this can be
reconsidered.

	
wrap(wrapped, namespace)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/wrappers.py#L125]

	Wrap an application of the base brick.

This method should be overriden to write into its
namespace argument all required changes.

	Parameters

	
	mcs (type [https://docs.python.org/3.4/library/functions.html#type]) – The metaclass.

	wrapped (Application) – The application to be wrapped.

	namespace (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – The namespace of the class being created.

	
class blocks.bricks.lookup.LookupTable(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/lookup.py#L8]

	Bases: blocks.bricks.interfaces.Initializable, blocks.bricks.interfaces.Feedforward

Encapsulates representations of a range of integers.

This brick can be used to embed integers, e.g. word indices,
into a vector space.

	Parameters

	
	length (int [https://docs.python.org/3.4/library/functions.html#int]) – The size of the lookup table, or in other words, one plus the
maximum index for which a representation is contained.

	dim (int [https://docs.python.org/3.4/library/functions.html#int]) – The dimensionality of representations.

Notes

See Initializable for initialization parameters.

	
W

	

	
apply

	Perform lookup.

	Parameters

	indices (TensorVariable) – The indices of interest. The dtype must be integer.

	Returns

	output – Representations for the indices of the query. Has \(k+1\)
dimensions, where \(k\) is the number of dimensions of the
indices parameter. The last dimension stands for the
representation element.

	Return type

	TensorVariable

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/lookup.py#L70]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
has_bias = False

	

	
input_dim

	

	
output_dim

	

Convolutional bricks

	
class blocks.bricks.conv.AveragePooling(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/conv.py#L409]

	Bases: blocks.bricks.conv.Pooling

Average pooling layer.

	Parameters

	include_padding (bool [https://docs.python.org/3.4/library/functions.html#bool], optional) – When calculating an average, include zeros that are the
result of zero padding added by the padding argument.
A value of True is only accepted if ignore_border
is also True. False by default.

Notes

For documentation on the remainder of the arguments to this
class, see MaxPooling.

	
class blocks.bricks.conv.Convolutional(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/conv.py#L13]

	Bases: blocks.bricks.interfaces.LinearLike

Performs a 2D convolution.

	Parameters

	
	filter_size (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – The height and width of the filter (also called kernels).

	num_filters (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of filters per channel.

	num_channels (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of input channels in the image. For the first layer this is
normally 1 for grayscale images and 3 for color (RGB) images. For
subsequent layers this is equal to the number of filters output by
the previous convolutional layer. The filters are pooled over the
channels.

	batch_size (int [https://docs.python.org/3.4/library/functions.html#int], optional) – Number of examples per batch. If given, this will be passed to
Theano convolution operator, possibly resulting in faster
execution.

	image_size (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple], optional) – The height and width of the input (image or feature map). If given,
this will be passed to the Theano convolution operator, resulting
in possibly faster execution times.

	step (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple], optional) – The step (or stride) with which to slide the filters over the
image. Defaults to (1, 1).

	border_mode ({'valid', 'full'}, optional) – The border mode to use, see scipy.signal.convolve2d() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html#scipy.signal.convolve2d] for
details. Defaults to ‘valid’.

	tied_biases (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Setting this to False will untie the biases, yielding a
separate bias for every location at which the filter is applied.
If True, it indicates that the biases of every filter in this
layer should be shared amongst all applications of that filter.
Defaults to True.

	
apply

	Perform the convolution.

	Parameters

	input (TensorVariable) – A 4D tensor with the axes representing batch size, number of
channels, image height, and image width.

	Returns

	output – A 4D tensor of filtered images (feature maps) with dimensions
representing batch size, number of filters, feature map height,
and feature map width.

The height and width of the feature map depend on the border
mode. For ‘valid’ it is image_size - filter_size + 1 while
for ‘full’ it is image_size + filter_size - 1.

	Return type

	TensorVariable

	
static conv2d_impl(input, filters, input_shape=None, filter_shape=None, border_mode='valid', subsample=(1, 1), filter_flip=True, image_shape=None, filter_dilation=(1, 1), num_groups=1, unshared=False, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/../../../envs/latest/local/lib/python2.7/site-packages/theano/tensor/nnet/__init__.py#L38]

	This function will build the symbolic graph for convolving a mini-batch of a
stack of 2D inputs with a set of 2D filters. The implementation is modelled
after Convolutional Neural Networks (CNN).

	Parameters

	
	input (symbolic 4D tensor) – Mini-batch of feature map stacks, of shape
(batch size, input channels, input rows, input columns).
See the optional parameter input_shape.

	filters (symbolic 4D or 6D tensor) – Set of filters used in CNN layer of shape
(output channels, input channels, filter rows, filter columns)
for normal convolution and
(output channels, output rows, output columns, input channels,
filter rows, filter columns)
for unshared convolution.
See the optional parameter filter_shape.

	input_shape (None [https://docs.python.org/3.4/library/constants.html#None], tuple/list of len 4 or 6 of int or Constant variable) – The shape of the input parameter.
Optional, possibly used to choose an optimal implementation.
You can give None for any element of the list to specify that this
element is not known at compile time.

	filter_shape (None [https://docs.python.org/3.4/library/constants.html#None], tuple/list of len 4 or 6 of int or Constant variable) – The shape of the filters parameter.
Optional, possibly used to choose an optimal implementation.
You can give None for any element of the list to specify that this
element is not known at compile time.

	border_mode (str [https://docs.python.org/3.4/library/stdtypes.html#str], int [https://docs.python.org/3.4/library/functions.html#int] or a tuple of two ints or pairs of ints) – Either of the following:

	'valid': apply filter wherever it completely overlaps with the

	input. Generates output of shape: input shape - filter shape + 1

	'full': apply filter wherever it partly overlaps with the input.

	Generates output of shape: input shape + filter shape - 1

	'half': pad input with a symmetric border of filter rows // 2

	rows and filter columns // 2 columns, then perform a valid
convolution. For filters with an odd number of rows and columns, this
leads to the output shape being equal to the input shape.

	int: pad input with a symmetric border of zeros of the given

	width, then perform a valid convolution.

	(int1, int2): (for 2D) pad input with a symmetric border of int1,

	int2, then perform a valid convolution.

	(int1, (int2, int3)) or ((int1, int2), int3): (for 2D)

	pad input with one symmetric border of int1` or int3, and
one asymmetric border of (int2, int3) or (int1, int2).

	subsample (tuple of len 2) – Factor by which to subsample the output.
Also called strides elsewhere.

	filter_flip (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, will flip the filter rows and columns
before sliding them over the input. This operation is normally referred
to as a convolution, and this is the default. If False, the filters
are not flipped and the operation is referred to as a cross-correlation.

	image_shape (None [https://docs.python.org/3.4/library/constants.html#None], tuple/list of len 4 of int or Constant variable) – Deprecated alias for input_shape.

	filter_dilation (tuple of len 2) – Factor by which to subsample (stride) the input.
Also called dilation elsewhere.

	num_groups (int [https://docs.python.org/3.4/library/functions.html#int]) – Divides the image, kernel and output tensors into num_groups
separate groups. Each which carry out convolutions separately

	unshared (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If true, then unshared or ‘locally connected’ convolution will be
performed. A different filter will be used for each region of the
input.

	kwargs (Any other keyword arguments are accepted for backwards) – compatibility, but will be ignored.

	Returns

	Set of feature maps generated by convolutional layer. Tensor is
of shape (batch size, output channels, output rows, output columns)

	Return type

	Symbolic 4D tensor

Notes

If cuDNN is available, it will be used on the
GPU. Otherwise, it is the CorrMM convolution that will be used
“caffe style convolution”.

This is only supported in Theano 0.8 or the development
version until it is released.

The parameter filter_dilation is an implementation of dilated
convolution [https://arxiv.org/pdf/1511.07122v3.pdf].

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/conv.py#L152]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
static get_output_shape(image_shape, kernel_shape, border_mode, subsample, filter_dilation=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/../../../envs/latest/local/lib/python2.7/site-packages/theano/tensor/nnet/abstract_conv.py#L35]

	This function compute the output shape of convolution operation.

	Parameters

	
	image_shape (tuple of int (symbolic or numeric) corresponding to the input) – image shape. Its four (or five) element must correspond respectively
to: batch size, number of input channels, height and width (and
possibly depth) of the image. None where undefined.

	kernel_shape (tuple of int (symbolic or numeric) corresponding to the) – kernel shape. For a normal convolution, its four (for 2D convolution)
or five (for 3D convolution) elements must correspond respectively to :
number of output channels, number of input channels, height and width
(and possibly depth) of the kernel.
For an unshared 2D convolution, its six channels must correspond to :
number of output channels, height and width of the output, number of
input channels, height and width of the kernel.
None where undefined.

	border_mode (string, int [https://docs.python.org/3.4/library/functions.html#int] (symbolic or numeric) or tuple of int (symbolic) – or numeric) or pairs of ints. If it is a string, it must be ‘valid’,
‘half’ or ‘full’. If it is a tuple, its two (or three) elements respectively
correspond to the padding on height and width (and possibly depth)
axis. For asymmetric padding, provide a pair of ints for each dimension.

	subsample (tuple of int (symbolic or numeric) Its two or three elements) – espectively correspond to the subsampling on height and width (and
possibly depth) axis.

	filter_dilation (tuple of int (symbolic or numeric) Its two or three) – elements correspond respectively to the dilation on height and width axis.

	- The shape of the convolution output does not depend on the 'unshared' (Note) – or the ‘num_groups’ parameters.

	Returns

	output_shape – four element must correspond respectively to: batch size, number of
output channels, height and width of the image. None where undefined.

	Return type

	tuple of int corresponding to the output image shape. Its

	
num_output_channels

	

	
class blocks.bricks.conv.ConvolutionalSequence(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/conv.py#L437]

	Bases: blocks.bricks.sequences.Sequence, blocks.bricks.interfaces.Initializable, blocks.bricks.interfaces.Feedforward

A sequence of convolutional (or pooling) operations.

	Parameters

	
	layers (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – List of convolutional bricks (i.e. Convolutional,
ConvolutionalActivation, or Pooling bricks),
or application methods from such bricks. Activation
bricks that operate elementwise can also be included.

	num_channels (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of input channels in the image. For the first layer this is
normally 1 for grayscale images and 3 for color (RGB) images. For
subsequent layers this is equal to the number of filters output by
the previous convolutional layer.

	batch_size (int [https://docs.python.org/3.4/library/functions.html#int], optional) – Number of images in batch. If given, will be passed to
theano’s convolution operator resulting in possibly faster
execution.

	image_size (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple], optional) – Width and height of the input (image/featuremap). If given,
will be passed to theano’s convolution operator resulting in
possibly faster execution.

	border_mode ('valid', 'full' or None [https://docs.python.org/3.4/library/constants.html#None], optional) – The border mode to use, see scipy.signal.convolve2d() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html#scipy.signal.convolve2d] for
details. Unlike with Convolutional, this defaults to
None, in which case no default value is pushed down to child
bricks at allocation time. Child bricks will in this case
need to rely on either a default border mode (usually valid)
or one provided at construction and/or after construction
(but before allocation).

	tied_biases (bool [https://docs.python.org/3.4/library/functions.html#bool], optional) – Same meaning as in Convolutional. Defaults to None,
in which case no value is pushed to child Convolutional
bricks.

Notes

The passed convolutional operators should be ‘lazy’ constructed, that
is, without specifying the batch_size, num_channels and image_size. The
main feature of ConvolutionalSequence is that it will set the
input dimensions of a layer to the output dimensions of the previous
layer by the push_allocation_config() method.

The push behaviour of tied_biases mirrors that of use_bias or any
initialization configuration: only an explicitly specified value is
pushed down the hierarchy. border_mode also has this behaviour.
The reason the border_mode parameter behaves the way it does is that
pushing a single default border_mode makes it very difficult to
have child bricks with different border modes. Normally, such things
would be overridden after push_allocation_config(), but this is
a particular hassle as the border mode affects the allocation
parameters of every subsequent child brick in the sequence. Thus, only
an explicitly specified border mode will be pushed down the hierarchy.

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/conv.py#L507]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
class blocks.bricks.conv.ConvolutionalTranspose(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/conv.py#L170]

	Bases: blocks.bricks.conv.Convolutional

Performs the transpose of a 2D convolution.

	Parameters

	
	num_filters (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of filters at the output of the transposed convolution,
i.e. the number of channels in the corresponding convolution.

	num_channels (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of channels at the input of the transposed convolution,
i.e. the number of output filters in the corresponding
convolution.

	step (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple], optional) – The step (or stride) of the corresponding convolution.
Defaults to (1, 1).

	image_size (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple], optional) – Image size of the input to the transposed convolution, i.e.
the output of the corresponding convolution. Required for tied
biases. Defaults to None.

	unused_edge (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple], optional) – Tuple of pixels added to the inferred height and width of the
output image, whose values would be ignored in the corresponding
forward convolution. Must be such that 0 <= unused_edge[i] <=
step[i]. Note that this parameter is ignored if
original_image_size is specified in the constructor or manually
set as an attribute.

	original_image_size (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple], optional) – The height and width of the image that forms the output of
the transpose operation, which is the input of the original
(non-transposed) convolution. By default, this is inferred
from image_size to be the size that has each pixel of the
original image touched by at least one filter application
in the original convolution. Degenerate cases with dropped
border pixels (in the original convolution) are possible, and can
be manually specified via this argument. See notes below.

See also

	Convolutional

	For the documentation of other parameters.

Notes

By default, original_image_size is inferred from image_size
as being the minimum size of image that could have produced this
output. Let hanging[i] = original_image_size[i] - image_size[i]
* step[i]. Any value of hanging[i] greater than
filter_size[i] - step[i] will result in border pixels that are
ignored by the original convolution. With this brick, any
original_image_size such that filter_size[i] - step[i] <
hanging[i] < filter_size[i] for all i can be validly specified.
However, no value will be output by the transposed convolution
itself for these extra hanging border pixels, and they will be
determined entirely by the bias.

	
conv2d_impl(input_, W, input_shape, subsample, border_mode, filter_shape)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/conv.py#L258]

	This function will build the symbolic graph for convolving a mini-batch of a
stack of 2D inputs with a set of 2D filters. The implementation is modelled
after Convolutional Neural Networks (CNN).

	Parameters

	
	input (symbolic 4D tensor) – Mini-batch of feature map stacks, of shape
(batch size, input channels, input rows, input columns).
See the optional parameter input_shape.

	filters (symbolic 4D or 6D tensor) – Set of filters used in CNN layer of shape
(output channels, input channels, filter rows, filter columns)
for normal convolution and
(output channels, output rows, output columns, input channels,
filter rows, filter columns)
for unshared convolution.
See the optional parameter filter_shape.

	input_shape (None [https://docs.python.org/3.4/library/constants.html#None], tuple/list of len 4 or 6 of int or Constant variable) – The shape of the input parameter.
Optional, possibly used to choose an optimal implementation.
You can give None for any element of the list to specify that this
element is not known at compile time.

	filter_shape (None [https://docs.python.org/3.4/library/constants.html#None], tuple/list of len 4 or 6 of int or Constant variable) – The shape of the filters parameter.
Optional, possibly used to choose an optimal implementation.
You can give None for any element of the list to specify that this
element is not known at compile time.

	border_mode (str [https://docs.python.org/3.4/library/stdtypes.html#str], int [https://docs.python.org/3.4/library/functions.html#int] or a tuple of two ints or pairs of ints) – Either of the following:

	'valid': apply filter wherever it completely overlaps with the

	input. Generates output of shape: input shape - filter shape + 1

	'full': apply filter wherever it partly overlaps with the input.

	Generates output of shape: input shape + filter shape - 1

	'half': pad input with a symmetric border of filter rows // 2

	rows and filter columns // 2 columns, then perform a valid
convolution. For filters with an odd number of rows and columns, this
leads to the output shape being equal to the input shape.

	int: pad input with a symmetric border of zeros of the given

	width, then perform a valid convolution.

	(int1, int2): (for 2D) pad input with a symmetric border of int1,

	int2, then perform a valid convolution.

	(int1, (int2, int3)) or ((int1, int2), int3): (for 2D)

	pad input with one symmetric border of int1` or int3, and
one asymmetric border of (int2, int3) or (int1, int2).

	subsample (tuple of len 2) – Factor by which to subsample the output.
Also called strides elsewhere.

	filter_flip (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, will flip the filter rows and columns
before sliding them over the input. This operation is normally referred
to as a convolution, and this is the default. If False, the filters
are not flipped and the operation is referred to as a cross-correlation.

	image_shape (None [https://docs.python.org/3.4/library/constants.html#None], tuple/list of len 4 of int or Constant variable) – Deprecated alias for input_shape.

	filter_dilation (tuple of len 2) – Factor by which to subsample (stride) the input.
Also called dilation elsewhere.

	num_groups (int [https://docs.python.org/3.4/library/functions.html#int]) – Divides the image, kernel and output tensors into num_groups
separate groups. Each which carry out convolutions separately

	unshared (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If true, then unshared or ‘locally connected’ convolution will be
performed. A different filter will be used for each region of the
input.

	kwargs (Any other keyword arguments are accepted for backwards) – compatibility, but will be ignored.

	Returns

	Set of feature maps generated by convolutional layer. Tensor is
of shape (batch size, output channels, output rows, output columns)

	Return type

	Symbolic 4D tensor

Notes

If cuDNN is available, it will be used on the
GPU. Otherwise, it is the CorrMM convolution that will be used
“caffe style convolution”.

This is only supported in Theano 0.8 or the development
version until it is released.

The parameter filter_dilation is an implementation of dilated
convolution [https://arxiv.org/pdf/1511.07122v3.pdf].

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/conv.py#L270]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
original_image_size

	

	
class blocks.bricks.conv.Flattener(name=None, children=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/conv.py#L551]

	Bases: blocks.bricks.base.Brick

Flattens the input.

It may be used to pass multidimensional objects like images or feature
maps of convolutional bricks into bricks which allow only two
dimensional input (batch, features) like MLP.

	
apply

	

	
class blocks.bricks.conv.MaxPooling(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/conv.py#L347]

	Bases: blocks.bricks.conv.Pooling

Max pooling layer.

	Parameters

	
	pooling_size (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – The height and width of the pooling region i.e. this is the factor
by which your input’s last two dimensions will be downscaled.

	step (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple], optional) – The vertical and horizontal shift (stride) between pooling regions.
By default this is equal to pooling_size. Setting this to a lower
number results in overlapping pooling regions.

	input_dim (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple], optional) – A tuple of integers representing the shape of the input. The last
two dimensions will be used to calculate the output dimension.

	padding (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple], optional) – A tuple of integers representing the vertical and horizontal
zero-padding to be applied to each of the top and bottom
(vertical) and left and right (horizontal) edges. For example,
an argument of (4, 3) will apply 4 pixels of padding to the
top edge, 4 pixels of padding to the bottom edge, and 3 pixels
each for the left and right edge. By default, no padding is
performed.

	ignore_border (bool [https://docs.python.org/3.4/library/functions.html#bool], optional) – Whether or not to do partial downsampling based on borders where
the extent of the pooling region reaches beyond the edge of the
image. If True, a (5, 5) image with (2, 2) pooling regions
and (2, 2) step will be downsampled to shape (2, 2), otherwise
it will be downsampled to (3, 3). True by default.

Notes

Warning

As of this writing, setting ignore_border to False with a step
not equal to the pooling size will force Theano to perform pooling
computations on CPU rather than GPU, even if you have specified
a GPU as your computation device. Additionally, Theano will only
use [cuDNN] (if available) for pooling computations with
ignure_border set to True. You can ensure that the entire
input is captured by at least one pool by using the padding
argument to add zero padding prior to pooling being performed.

	cuDNN

	NVIDIA cuDNN [https://developer.nvidia.com/cudnn].

	
class blocks.bricks.conv.Pooling(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/conv.py#L276]

	Bases: blocks.bricks.interfaces.Initializable, blocks.bricks.interfaces.Feedforward

Base Brick for pooling operations.

This should generally not be instantiated directly; see
MaxPooling.

	
apply

	Apply the pooling (subsampling) transformation.

	Parameters

	input (TensorVariable) – An tensor with dimension greater or equal to 2. The last two
dimensions will be downsampled. For example, with images this
means that the last two dimensions should represent the height
and width of your image.

	Returns

	output – A tensor with the same number of dimensions as input_, but
with the last two dimensions downsampled.

	Return type

	TensorVariable

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/conv.py#L334]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
image_size

	

	
num_channels

	

	
num_output_channels

	

Routing bricks

	
class blocks.bricks.parallel.Distribute(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/parallel.py#L174]

	Bases: blocks.bricks.parallel.Fork

Transform an input and add it to other inputs.

This brick is designed for the following scenario: one has a group of
variables and another separate variable, and one needs to somehow
distribute information from the latter across the former. We call that
“to distribute a varible across other variables”, and refer to the
separate variable as “the source” and to the variables from the group
as “the targets”.

Given a prototype brick, a Parallel brick makes several copies
of it (each with its own parameters). At the application time the
copies are applied to the source and the transformation results
are added to the targets (in the literate sense).

>>> from theano import tensor
>>> from blocks.initialization import Constant
>>> x = tensor.matrix('x')
>>> y = tensor.matrix('y')
>>> z = tensor.matrix('z')
>>> distribute = Distribute(target_names=['x', 'y'], source_name='z',
... target_dims=[2, 3], source_dim=3,
... weights_init=Constant(2))
>>> distribute.initialize()
>>> new_x, new_y = distribute.apply(x=x, y=y, z=z)
>>> new_x.eval({x: [[2, 2]], z: [[1, 1, 1]]})
array([[8., 8.]]...
>>> new_y.eval({y: [[1, 1, 1]], z: [[1, 1, 1]]})
array([[7., 7., 7.]]...

	Parameters

	
	target_names (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – The names of the targets.

	source_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the source.

	target_dims (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – A list of target dimensions, corresponding to target_names.

	source_dim (int [https://docs.python.org/3.4/library/functions.html#int]) – The dimension of the source input.

	prototype (Feedforward, optional) – The transformation prototype. A copy will be created for every
input. By default a linear transformation is used.

	
target_dims

	list

	
source_dim

	int

Notes

See Initializable for initialization parameters.

	
apply

	Distribute the source across the targets.

	Parameters

	**kwargs (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – The source and the target variables.

	Returns

	output – The new target variables.

	Return type

	list [https://docs.python.org/3.4/library/stdtypes.html#list]

	
apply_inputs()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/parallel.py#L271]

	

	
apply_outputs()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/parallel.py#L275]

	

	
class blocks.bricks.parallel.Fork(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/parallel.py#L98]

	Bases: blocks.bricks.parallel.Parallel

Several outputs from one input by applying similar transformations.

Given a prototype brick, a Fork brick makes several
copies of it (each with its own parameters). At the application time
the copies are applied to the input to produce different outputs.

A typical usecase for this brick is to produce inputs for gates
of gated recurrent bricks, such as
GatedRecurrent.

>>> from theano import tensor
>>> from blocks.initialization import Constant
>>> x = tensor.matrix('x')
>>> fork = Fork(output_names=['y', 'z'],
... input_dim=2, output_dims=[3, 4],
... weights_init=Constant(2), biases_init=Constant(1))
>>> fork.initialize()
>>> y, z = fork.apply(x)
>>> y.eval({x: [[1, 1]]})
array([[5., 5., 5.]]...
>>> z.eval({x: [[1, 1]]})
array([[5., 5., 5., 5.]]...

	Parameters

	
	output_names (list of str) – Names of the outputs to produce.

	input_dim (int [https://docs.python.org/3.4/library/functions.html#int]) – The input dimension.

	prototype (Feedforward, optional) – The transformation prototype. A copy will be created for every
input. By default an affine transformation is used.

	
input_dim

	int – The input dimension.

	
output_dims

	list – The output dimensions as a list of integers, corresponding to
output_names.

See also

Parallel, Initializable

	
apply

	

	
apply_outputs()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/parallel.py#L169]

	

	
class blocks.bricks.parallel.Merge(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/parallel.py#L280]

	Bases: blocks.bricks.parallel.Parallel

Merges several variables by applying a transformation and summing.

	Parameters

	
	input_names (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – The input names.

	input_dims (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – The dictionary of input dimensions, keys are input names, values
are dimensions.

	output_dim (int [https://docs.python.org/3.4/library/functions.html#int]) – The output dimension of the merged variables.

	prototype (Feedforward, optional) – A transformation prototype. A copy will be created for every
input. If None, a linear transformation is used.

	child_prefix (str [https://docs.python.org/3.4/library/stdtypes.html#str], optional) – A prefix for children names. By default “transform” is used.

	:param .. warning::: Note that if you want to have a bias you can pass a Linear

	brick as a prototype, but this will result in several redundant
biases. It is a better idea to use merge.children[0].use_bias =
True.

	
input_names

	list – The input names.

	
input_dims

	list – List of input dimensions corresponding to input_names.

	
output_dim

	int – The output dimension.

Examples

>>> from theano import tensor
>>> from blocks.initialization import Constant
>>> a = tensor.matrix('a')
>>> b = tensor.matrix('b')
>>> merge = Merge(input_names=['a', 'b'], input_dims=[3, 4],
... output_dim=2, weights_init=Constant(1.))
>>> merge.initialize()
>>> c = merge.apply(a=a, b=b)
>>> c.eval({a: [[1, 1, 1]], b: [[2, 2, 2, 2]]})
array([[11., 11.]]...

	
apply

	

	
apply_inputs()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/parallel.py#L347]

	

	
class blocks.bricks.parallel.Parallel(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/parallel.py#L11]

	Bases: blocks.bricks.interfaces.Initializable

Apply similar transformations to several inputs.

Given a prototype brick, a Parallel brick makes several
copies of it (each with its own parameters). At the application time
every copy is applied to the respective input.

>>> from theano import tensor
>>> from blocks.initialization import Constant
>>> x, y = tensor.matrix('x'), tensor.matrix('y')
>>> parallel = Parallel(
... prototype=Linear(use_bias=False),
... input_names=['x', 'y'], input_dims=[2, 3], output_dims=[4, 5],
... weights_init=Constant(2))
>>> parallel.initialize()
>>> new_x, new_y = parallel.apply(x=x, y=y)
>>> new_x.eval({x: [[1, 1]]})
array([[4., 4., 4., 4.]]...
>>> new_y.eval({y: [[1, 1, 1]]})
array([[6., 6., 6., 6., 6.]]...

	Parameters

	
	input_names (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – The input names.

	input_dims (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – List of input dimensions, given in the same order as input_names.

	output_dims (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – List of output dimensions.

	prototype (Feedforward) – The transformation prototype. A copy will be created for every
input.

	child_prefix (str [https://docs.python.org/3.4/library/stdtypes.html#str], optional) – The prefix for children names. By default “transform” is used.

	
input_names

	list – The input names.

	
input_dims

	list – Input dimensions.

	
output_dims

	list – Output dimensions.

Notes

See Initializable for initialization parameters.

	
apply

	

	
apply_inputs()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/parallel.py#L89]

	

	
apply_outputs()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/parallel.py#L93]

	

Recurrent bricks

Recurrent architectures

	
class blocks.bricks.recurrent.architectures.GatedRecurrent(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/recurrent/architectures.py#L248]

	Bases: blocks.bricks.recurrent.base.BaseRecurrent, blocks.bricks.interfaces.Initializable

Gated recurrent neural network.

Gated recurrent neural network (GRNN) as introduced in [CvMG14]. Every
unit of a GRNN is equipped with update and reset gates that facilitate
better gradient propagation.

	Parameters

	
	dim (int [https://docs.python.org/3.4/library/functions.html#int]) – The dimension of the hidden state.

	activation (Brick or None) – The brick to apply as activation. If None a
Tanh brick is used.

	gate_activation (Brick or None) – The brick to apply as activation for gates. If None a
Logistic brick is used.

Notes

See Initializable for initialization parameters.

	CvMG14

	Kyunghyun Cho, Bart van Merriënboer, Çağlar Gülçehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua
Bengio, Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation, EMNLP (2014), pp. 1724-1734.

	
apply

	Apply the gated recurrent transition.

	Parameters

	
	states (TensorVariable) – The 2 dimensional matrix of current states in the shape
(batch_size, dim). Required for one_step usage.

	inputs (TensorVariable) – The 2 dimensional matrix of inputs in the shape (batch_size,
dim)

	gate_inputs (TensorVariable) – The 2 dimensional matrix of inputs to the gates in the
shape (batch_size, 2 * dim).

	mask (TensorVariable) – A 1D binary array in the shape (batch,) which is 1 if there is
data available, 0 if not. Assumed to be 1-s only if not given.

	Returns

	output – Next states of the network.

	Return type

	TensorVariable

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/recurrent/architectures.py#L300]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
initial_states

	

	
state_to_gates

	

	
state_to_state

	

	
class blocks.bricks.recurrent.architectures.LSTM(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/recurrent/architectures.py#L89]

	Bases: blocks.bricks.recurrent.base.BaseRecurrent, blocks.bricks.interfaces.Initializable

Long Short Term Memory.

Every unit of an LSTM is equipped with input, forget and output gates.
This implementation is based on code by Mohammad Pezeshki that
implements the architecture used in [GSS03] and [Grav13]. It aims to
do as many computations in parallel as possible and expects the last
dimension of the input to be four times the output dimension.

Unlike a vanilla LSTM as described in [HS97], this model has peephole
connections from the cells to the gates. The output gates receive
information about the cells at the current time step, while the other
gates only receive information about the cells at the previous time
step. All ‘peephole’ weight matrices are diagonal.

	GSS03

	Gers, Felix A., Nicol N. Schraudolph, and Jürgen
Schmidhuber, Learning precise timing with LSTM recurrent
networks, Journal of Machine Learning Research 3 (2003),
pp. 115-143.

	Grav13(1,2)

	Graves, Alex, Generating sequences with recurrent neural
networks, arXiv preprint arXiv:1308.0850 (2013).

	HS97

	Sepp Hochreiter, and Jürgen Schmidhuber, Long Short-Term
Memory, Neural Computation 9(8) (1997), pp. 1735-1780.

	Parameters

	
	dim (int [https://docs.python.org/3.4/library/functions.html#int]) – The dimension of the hidden state.

	activation (Brick, optional) – The activation function. The default and by far the most popular
is Tanh.

	gate_activation (Brick or None) – The brick to apply as activation for gates (input/output/forget).
If None a Logistic brick is used.

Notes

See Initializable for initialization parameters.

	
apply

	Apply the Long Short Term Memory transition.

	Parameters

	
	states (TensorVariable) – The 2 dimensional matrix of current states in the shape
(batch_size, features). Required for one_step usage.

	cells (TensorVariable) – The 2 dimensional matrix of current cells in the shape
(batch_size, features). Required for one_step usage.

	inputs (TensorVariable) – The 2 dimensional matrix of inputs in the shape (batch_size,
features * 4). The inputs needs to be four times the
dimension of the LSTM brick to insure each four gates receive
different transformations of the input. See [Grav13]
equations 7 to 10 for more details. The inputs are then split
in this order: Input gates, forget gates, cells and output
gates.

	mask (TensorVariable) – A 1D binary array in the shape (batch,) which is 1 if there is
data available, 0 if not. Assumed to be 1-s only if not given.

	[Grav13] Graves, Alex, Generating sequences with recurrent (.) – neural networks, arXiv preprint arXiv:1308.0850 (2013).

	Returns

	
	states (TensorVariable) – Next states of the network.

	cells (TensorVariable) – Next cell activations of the network.

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/recurrent/architectures.py#L144]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
initial_states

	

	
class blocks.bricks.recurrent.architectures.SimpleRecurrent(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/recurrent/architectures.py#L12]

	Bases: blocks.bricks.recurrent.base.BaseRecurrent, blocks.bricks.interfaces.Initializable

The traditional recurrent transition.

The most well-known recurrent transition: a matrix multiplication,
optionally followed by a non-linearity.

	Parameters

	
	dim (int [https://docs.python.org/3.4/library/functions.html#int]) – The dimension of the hidden state

	activation (Brick) – The brick to apply as activation.

Notes

See Initializable for initialization parameters.

	
W

	

	
apply

	Apply the simple transition.

	Parameters

	
	inputs (TensorVariable) – The 2D inputs, in the shape (batch, features).

	states (TensorVariable) – The 2D states, in the shape (batch, features).

	mask (TensorVariable) – A 1D binary array in the shape (batch,) which is 1 if
there is data available, 0 if not. Assumed to be 1-s
only if not given.

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/recurrent/architectures.py#L41]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
initial_states

	

Helper bricks for recurrent networks

	
class blocks.bricks.recurrent.misc.Bidirectional(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/recurrent/misc.py#L13]

	Bases: blocks.bricks.interfaces.Initializable

Bidirectional network.

A bidirectional network is a combination of forward and backward
recurrent networks which process inputs in different order.

	Parameters

	prototype (instance of BaseRecurrent) – A prototype brick from which the forward and backward bricks are
cloned.

Notes

See Initializable for initialization parameters.

	
apply

	Applies forward and backward networks and concatenates outputs.

	
apply_delegate()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/recurrent/misc.py#L52]

	

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/recurrent/misc.py#L56]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
has_bias = False

	

	
class blocks.bricks.recurrent.misc.RecurrentStack(transitions, fork_prototype=None, states_name='states', skip_connections=False, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/recurrent/misc.py#L65]

	Bases: blocks.bricks.recurrent.base.BaseRecurrent, blocks.bricks.interfaces.Initializable

Stack of recurrent networks.

Builds a stack of recurrent layers from a supplied list of
BaseRecurrent objects.
Each object must have a sequences,
contexts, states and outputs parameters to its apply method,
such as the ones required by the recurrent decorator from
blocks.bricks.recurrent.

In Blocks in general each brick can have an apply method and this
method has attributes that list the names of the arguments that can be
passed to the method and the name of the outputs returned by the
method.
The attributes of the apply method of this class is made from
concatenating the attributes of the apply methods of each of the
transitions from which the stack is made.
In order to avoid conflict, the names of the arguments appearing in
the states and outputs attributes of the apply method of each
layers are renamed. The names of the bottom layer are used as-is and
a suffix of the form ‘#<n>’ is added to the names from other layers,
where ‘<n>’ is the number of the layer starting from 1, used for first
layer above bottom.

The contexts of all layers are merged into a single list of unique
names, and no suffix is added. Different layers with the same context
name will receive the same value.

The names that appear in sequences are treated in the same way as
the names of states and outputs if skip_connections is “True”.
The only exception is the “mask” element that may appear in the
sequences attribute of all layers, no suffix is added to it and
all layers will receive the same mask value.
If you set skip_connections to False then only the arguments of the
sequences from the bottom layer will appear in the sequences
attribute of the apply method of this class.
When using this class, with skip_connections set to “True”, you can
supply all inputs to all layers using a single fork which is created
with output_names set to the apply.sequences attribute of this
class. For example, SequenceGenerator will
create a such a fork.

Whether or not skip_connections is set, each layer above the bottom
also receives an input (values to its sequences arguments) from a
fork of the state of the layer below it. Not to be confused with the
external fork discussed in the previous paragraph.
It is assumed that all states attributes have a “states” argument
name (this can be configured with states_name parameter.)
The output argument with this name is forked and then added to all the
elements appearing in the sequences of the next layer (except for
“mask”.)
If skip_connections is False then this fork has a bias by default.
This allows direct usage of this class with input supplied only to the
first layer. But if you do supply inputs to all layers (by setting
skip_connections to “True”) then by default there is no bias and the
external fork you use to supply the inputs should have its own separate
bias.

	Parameters

	
	transitions (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – List of recurrent units to use in each layer. Each derived from
BaseRecurrent
Note: A suffix with layer number is added to transitions’ names.

	fork_prototype (FeedForward, optional) – A prototype for the transformation applied to states_name from
the states of each layer. The transformation is used when the
states_name argument from the outputs of one layer
is used as input to the sequences of the next layer. By default
it Linear transformation is used, with
bias if skip_connections is “False”. If you supply your own
prototype you have to enable/disable bias depending on the
value of skip_connections.

	states_name (string) – In a stack of RNN the state of each layer is used as input to the
next. The states_name identify the argument of the states
and outputs attributes of
each layer that should be used for this task. By default the
argument is called “states”. To be more precise, this is the name
of the argument in the outputs attribute of the apply method of
each transition (layer.) It is used, via fork, as the sequences
(input) of the next layer. The same element should also appear
in the states attribute of the apply method.

	skip_connections (bool [https://docs.python.org/3.4/library/functions.html#bool]) – By default False. When true, the sequences of all layers are
add to the sequences of the apply of this class. When false
only the sequences of the bottom layer appear in the sequences
of the apply of this class. In this case the default fork
used internally between layers has a bias (see fork_prototype.)
An external code can inspect the sequences attribute of the
apply method of this class to decide which arguments it need
(and in what order.) With skip_connections you can control
what is exposed to the externl code. If it is false then the
external code is expected to supply inputs only to the bottom
layer and if it is true then the external code is expected to
supply inputs to all layers. There is just one small problem,
the external inputs to the layers above the bottom layer are
added to a fork of the state of the layer below it. As a result
the output of two forks is added together and it will be
problematic if both will have a bias. It is assumed
that the external fork has a bias and therefore by default
the internal fork will not have a bias if skip_connections
is true.

Notes

See BaseRecurrent for more initialization parameters.

	
apply

	Apply the stack of transitions.

	Parameters

	
	low_memory (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Use the slow, but also memory efficient, implementation of
this code.

	*args (TensorVariable, optional) – Positional argumentes in the order in which they appear in
self.apply.sequences followed by self.apply.contexts.

	**kwargs (TensorVariable) – Named argument defined in self.apply.sequences,
self.apply.states or self.apply.contexts

	Returns

	outputs – The outputs of all transitions as defined in
self.apply.outputs

	Return type

	(list of) TensorVariable

See also

See docstring of this class for arguments appearing in the lists
self.apply.sequences, self.apply.states, self.apply.contexts.
See recurrent() : for all other
parameters such as iterate and return_initial_states however
reverse is currently not implemented.

	
do_apply(*args, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/recurrent/misc.py#L288]

	Apply the stack of transitions.

This is the undecorated implementation of the apply method.
A method with an @apply decoration should call this method with
iterate=True to indicate that the iteration over all steps
should be done internally by this method. A method with a
@recurrent method should have iterate=False (or unset) to
indicate that the iteration over all steps is done externally.

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/recurrent/misc.py#L398]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
initial_states

	

	
low_memory_apply

	

	
normal_inputs(level)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/recurrent/misc.py#L269]

	

	
static split_suffix(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/recurrent/misc.py#L187]

	

	
static suffix(name, level)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/recurrent/misc.py#L174]

	

	
static suffixes(names, level)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/recurrent/misc.py#L182]

	

Base definitions for recurrent bricks

	
class blocks.bricks.recurrent.base.BaseRecurrent(name=None, children=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/recurrent/base.py#L23]

	Bases: blocks.bricks.base.Brick

Base class for brick with recurrent application method.

	
has_bias = False

	

	
initial_states

	Return initial states for an application call.

Default implementation assumes that the recurrent application
method is called apply. It fetches the state names
from apply.states and a returns a zero matrix for each of them.

SimpleRecurrent, LSTM and GatedRecurrent
override this method with trainable initial states initialized
with zeros.

	Parameters

	
	batch_size (int [https://docs.python.org/3.4/library/functions.html#int]) – The batch size.

	*args – The positional arguments of the application call.

	**kwargs – The keyword arguments of the application call.

	
initial_states_outputs()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/recurrent/base.py#L58]

	

	
blocks.bricks.recurrent.base.recurrent(*args, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/recurrent/base.py#L63]

	Wraps an apply method to allow its iterative application.

This decorator allows you to implement only one step of a recurrent
network and enjoy applying it to sequences for free. The idea behind is
that its most general form information flow of an RNN can be described
as follows: depending on the context and driven by input sequences the
RNN updates its states and produces output sequences.

Given a method describing one step of an RNN and a specification
which of its inputs are the elements of the input sequence,
which are the states and which are the contexts, this decorator
returns an application method which implements the whole RNN loop.
The returned application method also has additional parameters,
see documentation of the recurrent_apply inner function below.

	Parameters

	
	sequences (list of strs) – Specifies which of the arguments are elements of input sequences.

	states (list of strs) – Specifies which of the arguments are the states.

	contexts (list of strs) – Specifies which of the arguments are the contexts.

	outputs (list of strs) – Names of the outputs. The outputs whose names match with those
in the state parameter are interpreted as next step states.

	Returns

	recurrent_apply – The new application method that applies the RNN to sequences.

	Return type

	Application

See also

The tutorial on RNNs

Attention bricks

This module defines the interface of attention mechanisms and a few
concrete implementations. For a gentle introduction and usage examples see
the tutorial TODO.

An attention mechanism decides to what part of the input to pay attention.
It is typically used as a component of a recurrent network, though one can
imagine it used in other conditions as well. When the input is big and has
certain structure, for instance when it is sequence or an image, an
attention mechanism can be applied to extract only information which is
relevant for the network in its current state.

For the purpose of documentation clarity, we fix the following terminology
in this file:

	network is the network, typically a recurrent one, which
uses the attention mechanism.

	The network has states. Using this word in plural might seem weird, but
some recurrent networks like LSTM do
have several states.

	The big structured input, to which the attention mechanism is applied,
is called the attended. When it has variable structure, e.g. a sequence
of variable length, there might be a mask associated with it.

	The information extracted by the attention from the attended is called
glimpse, more specifically glimpses because there might be a few
pieces of this information.

Using this terminology, the attention mechanism computes glimpses
given the states of the network and the attended.

An example: in the machine translation network from [BCB] the attended is
a sequence of so-called annotations, that is states of a bidirectional
network that was driven by word embeddings of the source sentence. The
attention mechanism assigns weights to the annotations. The weighted sum of
the annotations is further used by the translation network to predict the
next word of the generated translation. The weights and the weighted sum
are the glimpses. A generalized attention mechanism for this paper is
represented here as SequenceContentAttention.

	
class blocks.bricks.attention.AbstractAttention(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L58]

	Bases: blocks.bricks.base.Brick

The common interface for attention bricks.

First, see the module-level docstring for terminology.

A generic attention mechanism functions as follows. Its inputs are the
states of the network and the attended. Given these two it produces
so-called glimpses, that is it extracts information from the attended
which is necessary for the network in its current states

For computational reasons we separate the process described above into
two stages:

1. The preprocessing stage, preprocess(), includes computation
that do not involve the state. Those can be often performed in advance.
The outcome of this stage is called preprocessed_attended.

	The main stage, take_glimpses(), includes all the rest.

When an attention mechanism is applied sequentially, some glimpses from
the previous step might be necessary to compute the new ones. A
typical example for that is when the focus position from the previous
step is required. In such cases take_glimpses() should specify
such need in its interface (its docstring explains how to do that). In
addition initial_glimpses() should specify some sensible
initialization for the glimpses to be carried over.

Todo

Only single attended is currently allowed.

preprocess() and initial_glimpses() might end up
needing masks, which are currently not provided for them.

	Parameters

	
	state_names (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – The names of the network states.

	state_dims (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – The state dimensions corresponding to state_names.

	attended_dim (int [https://docs.python.org/3.4/library/functions.html#int]) – The dimension of the attended.

	
state_names

	list

	
state_dims

	list

	
attended_dim

	int

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L191]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
initial_glimpses(batch_size, attended)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L170]

	Return sensible initial values for carried over glimpses.

	Parameters

	
	batch_size (int or Variable) – The batch size.

	attended (Variable) – The attended.

	Returns

	initial_glimpses – The initial values for the requested glimpses. These might
simply consist of zeros or be somehow extracted from
the attended.

	Return type

	list of Variable

	
preprocess

	Perform the preprocessing of the attended.

Stage 1 of the attention mechanism, see AbstractAttention
docstring for an explanation of stages. The default implementation
simply returns attended.

	Parameters

	attended (Variable) – The attended.

	Returns

	preprocessed_attended – The preprocessed attended.

	Return type

	Variable

	
take_glimpses(attended, preprocessed_attended=None, attended_mask=None, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L136]

	Extract glimpses from the attended given the current states.

Stage 2 of the attention mechanism, see AbstractAttention
for an explanation of stages. If preprocessed_attended is not
given, should trigger the stage 1.

This application method must declare its inputs and outputs.
The glimpses to be carried over are identified by their presence
in both inputs and outputs list. The attended must be the first
input, the preprocessed attended must be the second one.

	Parameters

	
	attended (Variable) – The attended.

	preprocessed_attended (Variable, optional) – The preprocessed attended computed by preprocess(). When
not given, preprocess() should be called.

	attended_mask (Variable, optional) – The mask for the attended. This is required in the case of
padded structured output, e.g. when a number of sequences are
force to be the same length. The mask identifies position of
the attended that actually contain information.

	**kwargs (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – Includes the states and the glimpses to be carried over from
the previous step in the case when the attention mechanism is
applied sequentially.

	
class blocks.bricks.attention.AbstractAttentionRecurrent(name=None, children=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L452]

	Bases: blocks.bricks.recurrent.base.BaseRecurrent

The interface for attention-equipped recurrent transitions.

When a recurrent network is equipped with an attention mechanism its
transition typically consists of two steps: (1) the glimpses are taken
by the attention mechanism and (2) the next states are computed using
the current states and the glimpses. It is required for certain
usecases (such as sequence generator) that apart from a do-it-all
recurrent application method interfaces for the first step and
the second steps of the transition are provided.

	
apply(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L464]

	Compute next states taking glimpses on the way.

	
compute_states(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L474]

	Compute next states given current states and glimpses.

	
take_glimpses(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L469]

	Compute glimpses given the current states.

	
class blocks.bricks.attention.AttentionRecurrent(transition, attention, distribute=None, add_contexts=True, attended_name=None, attended_mask_name=None, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L480]

	Bases: blocks.bricks.attention.AbstractAttentionRecurrent, blocks.bricks.interfaces.Initializable

Combines an attention mechanism and a recurrent transition.

This brick equips a recurrent transition with an attention mechanism.
In order to do this two more contexts are added: one to be attended and
a mask for it. It is also possible to use the contexts of the given
recurrent transition for these purposes and not add any new ones,
see add_context parameter.

At the beginning of each step attention mechanism produces glimpses;
these glimpses together with the current states are used to compute the
next state and finish the transition. In some cases glimpses from the
previous steps are also necessary for the attention mechanism, e.g.
in order to focus on an area close to the one from the previous step.
This is also supported: such glimpses become states of the new
transition.

To let the user control the way glimpses are used, this brick also
takes a “distribute” brick as parameter that distributes the
information from glimpses across the sequential inputs of the wrapped
recurrent transition.

	Parameters

	
	transition (BaseRecurrent) – The recurrent transition.

	attention (Brick) – The attention mechanism.

	distribute (Brick, optional) – Distributes the information from glimpses across the input
sequences of the transition. By default a Distribute is
used, and those inputs containing the “mask” substring in their
name are not affected.

	add_contexts (bool [https://docs.python.org/3.4/library/functions.html#bool], optional) – If True, new contexts for the attended and the attended mask
are added to this transition, otherwise existing contexts of the
wrapped transition are used. True by default.

	attended_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the attended context. If None, “attended”
or the first context of the recurrent transition is used
depending on the value of add_contents flag.

	attended_mask_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the mask for the attended context. If None,
“attended_mask” or the second context of the recurrent transition
is used depending on the value of add_contents flag.

Notes

See Initializable for initialization parameters.

Wrapping your recurrent brick with this class makes all the
states mandatory. If you feel this is a limitation for you, try
to make it better! This restriction does not apply to sequences
and contexts: those keep being as optional as they were for
your brick.

Those coming to Blocks from Groundhog might recognize that this is
a RecurrentLayerWithSearch, but on steroids :)

	
apply

	Preprocess a sequence attending the attended context at every step.

Preprocesses the attended context and runs do_apply(). See
do_apply() documentation for further information.

	
apply_contexts()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L747]

	

	
apply_delegate()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L742]

	

	
compute_states

	Compute current states when glimpses have already been computed.

Combines an application of the distribute that alter the
sequential inputs of the wrapped transition and an application of
the wrapped transition. All unknown keyword arguments go to
the wrapped transition.

	Parameters

	**kwargs – Should contain everything what self.transition needs
and in addition the current glimpses.

	Returns

	current_states – Current states computed by self.transition.

	Return type

	list of TensorVariable

	
compute_states_outputs()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L666]

	

	
do_apply

	Process a sequence attending the attended context every step.

In addition to the original sequence this method also requires
its preprocessed version, the one computed by the preprocess
method of the attention mechanism. Unknown keyword arguments
are passed to the wrapped transition.

	Parameters

	**kwargs – Should contain current inputs, previous step states, contexts,
the preprocessed attended context, previous step glimpses.

	Returns

	outputs – The current step states and glimpses.

	Return type

	list of TensorVariable

	
do_apply_contexts()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L715]

	

	
do_apply_outputs()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L723]

	

	
do_apply_sequences()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L711]

	

	
do_apply_states()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L719]

	

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L762]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
initial_states

	

	
initial_states_outputs()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L758]

	

	
take_glimpses

	Compute glimpses with the attention mechanism.

A thin wrapper over self.attention.take_glimpses: takes care
of choosing and renaming the necessary arguments.

	Parameters

	**kwargs – Must contain the attended, previous step states and glimpses.
Can optionaly contain the attended mask and the preprocessed
attended.

	Returns

	glimpses – Current step glimpses.

	Return type

	list of TensorVariable

	
take_glimpses_outputs()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L623]

	

	
class blocks.bricks.attention.GenericSequenceAttention(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L199]

	Bases: blocks.bricks.attention.AbstractAttention

Logic common for sequence attention mechanisms.

	
compute_weighted_averages

	Compute weighted averages of the attended sequence vectors.

	Parameters

	
	weights (Variable) – The weights. The shape must be equal to the attended shape
without the last dimension.

	attended (Variable) – The attended. The index in the sequence must be the first
dimension.

	Returns

	weighted_averages – The weighted averages of the attended elements. The shape
is equal to the attended shape with the first dimension
dropped.

	Return type

	Variable

	
compute_weights

	Compute weights from energies in softmax-like fashion.

Todo

Use Softmax.

	Parameters

	
	energies (Variable) – The energies. Must be of the same shape as the mask.

	attended_mask (Variable) – The mask for the attended. The index in the sequence must be
the first dimension.

	Returns

	weights – Summing to 1 non-negative weights of the same shape
as energies.

	Return type

	Variable

	
class blocks.bricks.attention.SequenceContentAttention(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L259]

	Bases: blocks.bricks.attention.GenericSequenceAttention, blocks.bricks.interfaces.Initializable

Attention mechanism that looks for relevant content in a sequence.

This is the attention mechanism used in [BCB]. The idea in a nutshell:

	The states and the sequence are transformed independently,

	The transformed states are summed with every transformed sequence
element to obtain match vectors,

	A match vector is transformed into a single number interpreted as
energy,

	Energies are normalized in softmax-like fashion. The resulting
summing to one weights are called attention weights,

	Weighted average of the sequence elements with attention weights
is computed.

In terms of the AbstractAttention documentation, the sequence
is the attended. The weighted averages from 5 and the attention
weights from 4 form the set of glimpses produced by this attention
mechanism.

	Parameters

	
	state_names (list of str) – The names of the network states.

	attended_dim (int [https://docs.python.org/3.4/library/functions.html#int]) – The dimension of the sequence elements.

	match_dim (int [https://docs.python.org/3.4/library/functions.html#int]) – The dimension of the match vector.

	state_transformer (Brick) – A prototype for state transformations. If None,
a linear transformation is used.

	attended_transformer (Feedforward) – The transformation to be applied to the sequence. If None an
affine transformation is used.

	energy_computer (Feedforward) – Computes energy from the match vector. If None, an affine
transformations preceeded by \(tanh\) is used.

Notes

See Initializable for initialization parameters.

	BCB(1,2)

	Dzmitry Bahdanau, Kyunghyun Cho and Yoshua Bengio. Neural
Machine Translation by Jointly Learning to Align and Translate.

	
compute_energies

	

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L410]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
initial_glimpses

	

	
preprocess

	Preprocess the sequence for computing attention weights.

	Parameters

	attended (TensorVariable) – The attended sequence, time is the 1-st dimension.

	
take_glimpses

	Compute attention weights and produce glimpses.

	Parameters

	
	attended (TensorVariable) – The sequence, time is the 1-st dimension.

	preprocessed_attended (TensorVariable) – The preprocessed sequence. If None, is computed by calling
preprocess().

	attended_mask (TensorVariable) – A 0/1 mask specifying available data. 0 means that the
corresponding sequence element is fake.

	**states – The states of the network.

	Returns

	
	weighted_averages (Variable) – Linear combinations of sequence elements with the attention
weights.

	weights (Variable) – The attention weights. The first dimension is batch, the second
is time.

	
take_glimpses_inputs()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L388]

	

	
class blocks.bricks.attention.ShallowEnergyComputer(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/attention.py#L418]

	Bases: blocks.bricks.sequences.Sequence, blocks.bricks.interfaces.Initializable, blocks.bricks.interfaces.Feedforward

A simple energy computer: first tanh, then weighted sum.

	Parameters

	use_bias (bool [https://docs.python.org/3.4/library/functions.html#bool], optional) – Whether a bias should be added to the energies. Does not change
anything if softmax normalization is used to produce the attention
weights, but might be useful when e.g. spherical softmax is used.

	
input_dim

	

	
output_dim

	

Sequence generators

Recurrent networks are often used to generate/model sequences.
Examples include language modelling, machine translation, handwriting
synthesis, etc.. A typical pattern in this context is that
sequence elements are generated one often another, and every generated
element is fed back into the recurrent network state. Sometimes
also an attention mechanism is used to condition sequence generation
on some structured input like another sequence or an image.

This module provides SequenceGenerator that builds a sequence
generating network from three main components:

	a core recurrent transition, e.g. LSTM
or GatedRecurrent

	a readout component that can produce sequence elements using
the network state and the information from the attention mechanism

	an attention mechanism (see attention for
more information)

Implementation-wise SequenceGenerator fully relies on
BaseSequenceGenerator. At the level of the latter an
attention is mandatory, moreover it must be a part of the recurrent
transition (see AttentionRecurrent).
To simulate optional attention, SequenceGenerator wraps the
pure recurrent network in FakeAttentionRecurrent.

	
class blocks.bricks.sequence_generators.AbstractEmitter(name=None, children=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L578]

	Bases: blocks.bricks.base.Brick

The interface for the emitter component of a readout.

	
readout_dim

	int – The dimension of the readout. Is given by the
Readout brick when allocation configuration
is pushed.

See also

Readout

	SoftmaxEmitter

	for integer outputs

Notes

An important detail about the emitter cost is that it will be
evaluated with inputs of different dimensions so it has to be
flexible enough to handle this. The two ways in which it can be
applied are:

1. In :meth:BaseSequenceGenerator.cost_matrix where it will
be applied to the whole sequence at once.

2. In :meth:BaseSequenceGenerator.generate where it will be
applied to only one step of the sequence.

	
cost(readouts, outputs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L613]

	Implements the respective method of Readout.

	
emit(readouts)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L608]

	Implements the respective method of Readout.

	
initial_outputs(batch_size)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L618]

	Implements the respective method of Readout.

	
class blocks.bricks.sequence_generators.AbstractFeedback(name=None, children=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L625]

	Bases: blocks.bricks.base.Brick

The interface for the feedback component of a readout.

See also

Readout, LookupFeedback

	
feedback(outputs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L635]

	Implements the respective method of Readout.

	
class blocks.bricks.sequence_generators.AbstractReadout(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L367]

	Bases: blocks.bricks.interfaces.Initializable

The interface for the readout component of a sequence generator.

The readout component of a sequence generator is a bridge between
the core recurrent network and the output sequence.

	Parameters

	
	source_names (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – A list of the source names (outputs) that are needed for the
readout part e.g. ['states'] or
['states', 'weighted_averages'] or ['states', 'feedback'].

	readout_dim (int [https://docs.python.org/3.4/library/functions.html#int]) – The dimension of the readout.

	
source_names

	list

	
readout_dim

	int

See also

	BaseSequenceGenerator

	see how exactly a readout is used

	Readout

	the typically used readout brick

	
cost(readouts, outputs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L413]

	Compute generation cost of outputs given readouts.

	Parameters

	
	readouts (Variable) – Readouts produced by the readout() method
of a (…, readout dim) shape.

	outputs (Variable) – Outputs whose cost should be computed. Should have as many
or one less dimensions compared to readout. If readout has
n dimensions, first n - 1 dimensions of outputs should
match with those of readouts.

	
emit(readouts)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L400]

	Produce outputs from readouts.

	Parameters

	readouts (Variable) – Readouts produced by the readout() method of
a (batch_size, readout_dim) shape.

	
feedback(outputs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L454]

	Feeds outputs back to be used as inputs of the transition.

	
initial_outputs(batch_size)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L431]

	Compute initial outputs for the generator’s first step.

In the notation from the BaseSequenceGenerator
documentation this method should compute \(y_0\).

	
readout(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L441]

	Compute the readout vector from states, glimpses, etc.

	Parameters

	**kwargs (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – Contains sequence generator states, glimpses,
contexts and feedback from the previous outputs.

	
class blocks.bricks.sequence_generators.BaseSequenceGenerator(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L47]

	Bases: blocks.bricks.interfaces.Initializable

A generic sequence generator.

This class combines two components, a readout network and an
attention-equipped recurrent transition, into a context-dependent
sequence generator. Third component must be also given which
forks feedback from the readout network to obtain inputs for the
transition.

The class provides two methods: generate() and cost(). The
former is to actually generate sequences and the latter is to compute
the cost of generating given sequences.

The generation algorithm description follows.

Definitions and notation:

	States \(s_i\) of the generator are the states of the transition
as specified in transition.state_names.

	Contexts of the generator are the contexts of the
transition as specified in transition.context_names.

	Glimpses \(g_i\) are intermediate entities computed at every
generation step from states, contexts and the previous step glimpses.
They are computed in the transition’s apply method when not given
or by explicitly calling the transition’s take_glimpses method. The
set of glimpses considered is specified in
transition.glimpse_names.

	Outputs \(y_i\) are produced at every step and form the output
sequence. A generation cost \(c_i\) is assigned to each output.

Algorithm:

	Initialization.

\[\begin{split}y_0 = readout.initial_outputs(contexts)\\
s_0, g_0 = transition.initial_states(contexts)\\
i = 1\\\end{split}\]

By default all recurrent bricks from recurrent
have trainable initial states initialized with zeros. Subclass them
or BaseRecurrent directly to get
custom initial states.

	New glimpses are computed:

\[g_i = transition.take_glimpses(
s_{i-1}, g_{i-1}, contexts)\]

	A new output is generated by the readout and its cost is
computed:

\[\begin{split}f_{i-1} = readout.feedback(y_{i-1}) \\
r_i = readout.readout(f_{i-1}, s_{i-1}, g_i, contexts) \\
y_i = readout.emit(r_i) \\
c_i = readout.cost(r_i, y_i)\end{split}\]

Note that the new glimpses and the old states are used at this
step. The reason for not merging all readout methods into one is
to make an efficient implementation of cost() possible.

	New states are computed and iteration is done:

\[\begin{split}f_i = readout.feedback(y_i) \\
s_i = transition.compute_states(s_{i-1}, g_i,
 fork.apply(f_i), contexts) \\
i = i + 1\end{split}\]

	Back to step 2 if the desired sequence
length has not been yet reached.

A scheme of the algorithm described above follows.

[image: ../_images/sequence_generator_scheme.png]

	Parameters

	
	readout (instance of AbstractReadout) – The readout component of the sequence generator.

	transition (instance of AbstractAttentionRecurrent) – The transition component of the sequence generator.

	fork (Brick) – The brick to compute the transition’s inputs from the feedback.

See also

	Initializable

	for initialization parameters

	SequenceGenerator

	more user friendly interface to thisbrick

	
cost

	Returns the average cost over the minibatch.

The cost is computed by averaging the sum of per token costs for
each sequence over the minibatch.

Warning

Note that, the computed cost can be problematic when batches
consist of vastly different sequence lengths.

	Parameters

	
	outputs (TensorVariable) – The 3(2) dimensional tensor containing output sequences.
The axis 0 must stand for time, the axis 1 for the
position in the batch.

	mask (TensorVariable) – The binary matrix identifying fake outputs.

	Returns

	cost – Theano variable for cost, computed by summing over timesteps
and then averaging over the minibatch.

	Return type

	Variable

Notes

The contexts are expected as keyword arguments.

Adds average cost per sequence element AUXILIARY variable to
the computational graph with name per_sequence_element.

	
cost_matrix

	Returns generation costs for output sequences.

See also

	cost()

	Scalar cost.

	
generate

	A sequence generation step.

	Parameters

	outputs (TensorVariable) – The outputs from the previous step.

Notes

The contexts, previous states and glimpses are expected as keyword
arguments.

	
generate_delegate()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L329]

	

	
generate_outputs()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L337]

	

	
generate_states()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L333]

	

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L342]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
initial_states

	

	
initial_states_outputs()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L361]

	

	
class blocks.bricks.sequence_generators.FakeAttentionRecurrent(transition, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L772]

	Bases: blocks.bricks.attention.AbstractAttentionRecurrent, blocks.bricks.interfaces.Initializable

Adds fake attention interface to a transition.

BaseSequenceGenerator requires its transition brick to support
AbstractAttentionRecurrent interface,
that is to have an embedded attention mechanism. For the cases when no
attention is required (e.g. language modeling or encoder-decoder
models), FakeAttentionRecurrent is used to wrap a usual
recurrent brick. The resulting brick has no glimpses and simply
passes all states and contexts to the wrapped one.

Todo

Get rid of this brick and support attention-less transitions
in BaseSequenceGenerator.

	
apply

	

	
apply_delegate()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L804]

	

	
compute_states

	

	
compute_states_delegate()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L812]

	

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L829]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
initial_states

	

	
initial_states_outputs()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L825]

	

	
take_glimpses

	

	
class blocks.bricks.sequence_generators.LookupFeedback(num_outputs=None, feedback_dim=None, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L742]

	Bases: blocks.bricks.sequence_generators.AbstractFeedback, blocks.bricks.interfaces.Initializable

A feedback brick for the case when readout are integers.

Stores and retrieves distributed representations of integers.

	
feedback

	

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L766]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
class blocks.bricks.sequence_generators.Readout(emitter=None, feedback_brick=None, merge=None, merge_prototype=None, post_merge=None, merged_dim=None, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L460]

	Bases: blocks.bricks.sequence_generators.AbstractReadout

Readout brick with separated emitter and feedback parts.

Readout combines a few bits and pieces into an object
that can be used as the readout component in
BaseSequenceGenerator. This includes an emitter brick,
to which emit(), cost() and initial_outputs()
calls are delegated, a feedback brick to which feedback()
functionality is delegated, and a pipeline to actually compute
readouts from all the sources (see the source_names attribute
of AbstractReadout).

The readout computation pipeline is constructed from merge and
post_merge brick, whose responsibilites are described in the
respective docstrings.

	Parameters

	
	emitter (an instance of AbstractEmitter) – The emitter component.

	feedback_brick (an instance of AbstractFeedback) – The feedback component.

	merge (Brick, optional) – A brick that takes the sources given in source_names as an input
and combines them into a single output. If given, merge_prototype
cannot be given.

	merge_prototype (FeedForward, optional) – If merge isn’t given, the transformation given by
merge_prototype is applied to each input before being summed. By
default a Linear transformation without biases is used.
If given, merge cannot be given.

	post_merge (Feedforward, optional) – This transformation is applied to the merged inputs. By default
Bias is used.

	merged_dim (int [https://docs.python.org/3.4/library/functions.html#int], optional) – The input dimension of post_merge i.e. the output dimension of
merge (or merge_prototype). If not give, it is assumed to be
the same as readout_dim (i.e. post_merge is assumed to not
change dimensions).

	**kwargs (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – Passed to the parent’s constructor.

See also

	BaseSequenceGenerator

	see how exactly a readout is used

AbstractEmitter, AbstractFeedback

	
cost

	

	
emit

	

	
feedback

	

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L567]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
initial_outputs

	

	
readout

	

	
class blocks.bricks.sequence_generators.SequenceGenerator(readout, transition, attention=None, add_contexts=True, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L833]

	Bases: blocks.bricks.sequence_generators.BaseSequenceGenerator

A more user-friendly interface for BaseSequenceGenerator.

	Parameters

	
	readout (instance of AbstractReadout) – The readout component for the sequence generator.

	transition (instance of BaseRecurrent) – The recurrent transition to be used in the sequence generator.
Will be combined with attention, if that one is given.

	attention (object [https://docs.python.org/3.4/library/functions.html#object], optional) – The attention mechanism to be added to transition,
an instance of
AbstractAttention.

	add_contexts (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, the
AttentionRecurrent wrapping the
transition will add additional contexts for the attended and its
mask.

	**kwargs (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – All keywords arguments are passed to the base class. If fork
keyword argument is not provided, Fork is created
that forks all transition sequential inputs without a “mask”
substring in them.

	
class blocks.bricks.sequence_generators.SoftmaxEmitter(initial_output=0, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L677]

	Bases: blocks.bricks.sequence_generators.AbstractEmitter, blocks.bricks.interfaces.Initializable, blocks.bricks.interfaces.Random

A softmax emitter for the case of integer outputs.

Interprets readout elements as energies corresponding to their indices.

	Parameters

	initial_output (int or a scalar Variable) – The initial output.

	
cost

	

	
emit

	

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L719]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
initial_outputs

	

	
probs

	

	
class blocks.bricks.sequence_generators.TrivialEmitter(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L641]

	Bases: blocks.bricks.sequence_generators.AbstractEmitter

An emitter for the trivial case when readouts are outputs.

	Parameters

	readout_dim (int [https://docs.python.org/3.4/library/functions.html#int]) – The dimension of the readout.

Notes

By default cost() always returns zero tensor.

	
cost

	

	
emit

	

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L671]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
initial_outputs

	

	
class blocks.bricks.sequence_generators.TrivialFeedback(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L725]

	Bases: blocks.bricks.sequence_generators.AbstractFeedback

A feedback brick for the case when readout are outputs.

	
feedback

	

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/sequence_generators.py#L736]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

Cost bricks

	
class blocks.bricks.cost.AbsoluteError(name=None, children=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/cost.py#L42]

	Bases: blocks.bricks.cost.CostMatrix

	
cost_matrix

	

	
class blocks.bricks.cost.BinaryCrossEntropy(name=None, children=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/cost.py#L35]

	Bases: blocks.bricks.cost.CostMatrix

	
cost_matrix

	

	
class blocks.bricks.cost.CategoricalCrossEntropy(name=None, children=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/cost.py#L56]

	Bases: blocks.bricks.cost.Cost

	
apply

	

	
class blocks.bricks.cost.Cost(name=None, children=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/cost.py#L11]

	Bases: blocks.bricks.base.Brick

	
apply

	

	
class blocks.bricks.cost.CostMatrix(name=None, children=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/cost.py#L19]

	Bases: blocks.bricks.cost.Cost

Base class for costs which can be calculated element-wise.

Assumes that the data has format (batch, features).

	
apply

	

	
cost_matrix

	

	
class blocks.bricks.cost.MisclassificationRate(top_k=1)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/cost.py#L63]

	Bases: blocks.bricks.cost.Cost

Calculates the misclassification rate for a mini-batch.

	Parameters

	top_k (int [https://docs.python.org/3.4/library/functions.html#int], optional) – If the ground truth class is within the top_k highest
responses for a given example, the model is considered
to have predicted correctly. Default: 1.

Notes

Ties for top_k-th place are broken pessimistically, i.e.
in the (in practice, rare) case that there is a tie for top_k-th
highest output for a given example, it is considered an incorrect
prediction.

	
apply

	

	
class blocks.bricks.cost.SquaredError(name=None, children=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/cost.py#L49]

	Bases: blocks.bricks.cost.CostMatrix

	
cost_matrix

	

Wrapper bricks

	
class blocks.bricks.wrappers.BrickWrapper[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/wrappers.py#L47]

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

Base class for wrapper metaclasses.

Sometimes one wants to extend a brick with the capability to handle
inputs different from what it was designed to handle. A typical
example are inputs with more dimensions that was foreseen at
the development stage. One way to proceed in such a situation
is to write a decorator that wraps all application methods of
the brick class by some additional logic before and after
the application call. BrickWrapper serves as a
convenient base class for such decorators.

Note, that since directly applying a decorator to a Brick
subclass will only take place after
__new__() is called, subclasses
of BrickWrapper should be applied by setting the decorators
attribute of the new brick class, like in the example below:

>>> from blocks.bricks.base import Brick
>>> class WrappedBrick(Brick):
... decorators = [WithExtraDims()]

	
wrap(wrapped, namespace)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/wrappers.py#L81]

	Wrap an application of the base brick.

This method should be overriden to write into its
namespace argument all required changes.

	Parameters

	
	mcs (type [https://docs.python.org/3.4/library/functions.html#type]) – The metaclass.

	wrapped (Application) – The application to be wrapped.

	namespace (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – The namespace of the class being created.

	
class blocks.bricks.wrappers.WithExtraDims[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/wrappers.py#L101]

	Bases: blocks.bricks.wrappers.BrickWrapper

Wraps a brick’s applications to handle inputs with extra dimensions.

A brick can be often reused even when data has more dimensions
than in the default setting. An example is a situation when one wants
to apply categorical_cross_entropy()
to temporal data, that is when an additional ‘time’ axis is prepended
to its both x and y inputs.

This wrapper adds reshapes required to use application
methods of a brick with such data by merging the extra dimensions
with the first non-extra one. Two key assumptions
are made: that all inputs and outputs have the same number of extra
dimensions and that these extra dimensions are equal throughout
all inputs and outputs.

While this might be inconvinient, the wrapped brick does not try to
guess the number of extra dimensions, but demands it as an argument.
The considerations of simplicity and reliability motivated this design
choice. Upon availability in Blocks of a mechanism to request the
expected number of dimensions for an input of a brick, this can be
reconsidered.

	
wrap(wrapped, namespace)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/wrappers.py#L125]

	Wrap an application of the base brick.

This method should be overriden to write into its
namespace argument all required changes.

	Parameters

	
	mcs (type [https://docs.python.org/3.4/library/functions.html#type]) – The metaclass.

	wrapped (Application) – The application to be wrapped.

	namespace (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – The namespace of the class being created.

Extensions

	
class blocks.extensions.CallbackName[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L136]

	Bases: str [https://docs.python.org/3.4/library/stdtypes.html#str]

A name of a TrainingExtension callback.

	Raises

	
	TypeError [https://docs.python.org/3.4/library/exceptions.html#TypeError] on comparison with a string which is not a name of

	TrainingExtension callback.

	
class blocks.extensions.CompositeExtension(sub_extensions, run_before_children=True, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L376]

	Bases: blocks.extensions.SimpleExtension

An extension that manages several other extensions.

	Parameters

	
	sub_extensions (iterable) – An iterable collection of sub-extensions to manage.

	run_before_children (bool [https://docs.python.org/3.4/library/functions.html#bool], optional) – Whether the container extension’s own logic should
be dispatched before that of the sub-extensions.
If False, the containing extension is dispatched last.
Defaults to True.

Notes

The main use case for this class is bundling together groups
of extensions that are most commonly used in tandem, configured
so as to interact with one another. Encapsulating this pattern
in a single extension reduces boilerplate.

Sub-extensions are dispatched in the order specified in
sub_extensions, on whatever triggers they are individually
configured to respect.

Sub-extensions may be run on different triggers than the containing
extension; the trigger keywords passed to the constructor
for this class only affect the outer extension’s logic, and
sub-extensions should be configured independently (possibly in
a constructor for a subclass of CompositeExtension).

	
dispatch(callback_invoked, *from_main_loop)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L412]

	Check conditions and call the do() method.

Also adds additional arguments if specified for a condition.

Todo

Add a check for a situation when several conditions are met
at the same time and do something.

	
do(which_callback, *args)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L435]

	Does the job of the training extension.

	Parameters

	
	which_callback (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the callback in the context of which do() is
run.

	*args (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – The arguments from the main loop concatenated with additional
arguments from user.

Notes

Subclasses must accept additional positional arguments in their
call signature for this method, even if they are unused.

	
main_loop

	

	
class blocks.extensions.FinishAfter(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L439]

	Bases: blocks.extensions.SimpleExtension

Finishes the training process when triggered.

	
do(which_callback, *args)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L444]

	Does the job of the training extension.

	Parameters

	
	which_callback (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the callback in the context of which do() is
run.

	*args (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – The arguments from the main loop concatenated with additional
arguments from user.

Notes

Subclasses must accept additional positional arguments in their
call signature for this method, even if they are unused.

	
class blocks.extensions.Predicate(condition, num)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L154]

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

	
class blocks.extensions.Printing(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L448]

	Bases: blocks.extensions.SimpleExtension

Prints log messages to the screen.

	
do(which_callback, *args)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L463]

	Does the job of the training extension.

	Parameters

	
	which_callback (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the callback in the context of which do() is
run.

	*args (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – The arguments from the main loop concatenated with additional
arguments from user.

Notes

Subclasses must accept additional positional arguments in their
call signature for this method, even if they are unused.

	
class blocks.extensions.ProgressBar(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L490]

	Bases: blocks.extensions.TrainingExtension

Display a progress bar during training.

This extension tries to infer the number of iterations per epoch
by querying the num_batches, num_examples and batch_size
attributes from the IterationScheme. When this information is
not available it will display a simplified progress bar that does not
include the estimated time until the end of this epoch.

Notes

This extension should be run before other extensions that print to
the screen at the end or at the beginning of the epoch (e.g. the
Printing extension). Placing ProgressBar before these
extension will ensure you won’t get intermingled output on your
terminal.

	
after_epoch()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L570]

	The callback invoked after an epoch is finished.

	
before_batch(batch)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L577]

	The callback invoked before a batch is processed.

	Parameters

	batch (object [https://docs.python.org/3.4/library/functions.html#object]) – The data batch to be processed.

	
before_epoch()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L567]

	The callback invoked before starting an epoch.

	
create_bar()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L541]

	Create a new progress bar.

Calls self.get_iter_per_epoch(), selects an appropriate
set of widgets and creates a ProgressBar.

	
get_iter_per_epoch()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L524]

	Try to infer the number of iterations per epoch.

	
class blocks.extensions.SimpleExtension(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L179]

	Bases: blocks.extensions.TrainingExtension

A base class for simple extensions.

All logic of simple extensions is concentrated in the method
do(). This method is called when certain conditions are
fulfilled. The user can manage the conditions by calling the
add_condition method and by passing arguments to the constructor. In
addition to specifying when do() is called, it is possible to
specify additional arguments passed to do() under different
conditions.

	Parameters

	
	before_training (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, do() is invoked before training.

	before_first_epoch (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, do() is invoked before the first epoch.

	before_epoch (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, do() is invoked before every epoch.

	on_resumption (bool [https://docs.python.org/3.4/library/functions.html#bool], optional) – If True, do() is invoked when training is resumed.

	on_interrupt (bool [https://docs.python.org/3.4/library/functions.html#bool], optional) – If True, do() is invoked when training is interrupted.

	after_epoch (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, do() is invoked after every epoch.

	after_batch (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, do() is invoked after every batch.

	after_training (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, do() is invoked after training.

	after_n_epochs (int [https://docs.python.org/3.4/library/functions.html#int], optional) – If not None, do() is invoked when after_n_epochs
epochs are done.

	every_n_epochs (int [https://docs.python.org/3.4/library/functions.html#int], optional) – If not None, do() is invoked after every n-th epoch.

	after_n_batches (int [https://docs.python.org/3.4/library/functions.html#int], optional) – If not None, do() is invoked when after_n_batches
batches are processed.

	every_n_batches (int [https://docs.python.org/3.4/library/functions.html#int], optional) – If not None, do() is invoked after every n-th batch.

	
BOOLEAN_TRIGGERS = frozenset(['before_batch', 'after_batch', 'after_training', 'before_epoch', 'before_training', 'on_error', 'before_first_epoch', 'after_epoch', 'on_interrupt', 'on_resumption'])

	

	
INTEGER_TRIGGERS = frozenset(['every_n_batches', 'after_n_epochs', 'every_n_epochs', 'after_n_batches'])

	

	
add_condition(callbacks_names, predicate=None, arguments=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L276]

	Adds a condition under which a do() is called.

	Parameters

	
	callbacks_names (list of str) – The names of the callback in which the method.

	predicate (function) – A predicate function the main loop’s log as the
single parameter and returning True when the method
should be called and False when should not. If None,
an always True predicate is used.

	arguments (iterable) – Additional arguments to be passed to do(). They will
be concatenated with the ones passed from the main loop
(e.g. the batch in case of after_epoch callback).

	Returns

	

	Return type

	The extension object (allow chaining calls)

	
dispatch(callback_invoked, *from_main_loop)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L332]

	Check conditions and call the do() method.

Also adds additional arguments if specified for a condition.

Todo

Add a check for a situation when several conditions are met
at the same time and do something.

	
do(which_callback, *args)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L311]

	Does the job of the training extension.

	Parameters

	
	which_callback (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the callback in the context of which do() is
run.

	*args (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – The arguments from the main loop concatenated with additional
arguments from user.

Notes

Subclasses must accept additional positional arguments in their
call signature for this method, even if they are unused.

	
static parse_args(which_callback, args)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L348]

	Separates do() arguments coming from different sources.

When a do() method receives arguments from both the main
loop (e.g. a batch) and the user, it often has to separate them.
This method is the right tool to use.

	Parameters

	
	which_callback (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the callback.

	args (iterable) – The arguments.

	Returns

	
	from_main_loop (tuple)

	from_user (tuple)

	
set_conditions(**kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L242]

	Set the conditions for which this extension should be run.

:param See the SimpleExtension docstring for a list of:
:param possible parameters.:

	
class blocks.extensions.Timestamp(log_record='timestamp', separator=' ', **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L668]

	Bases: blocks.extensions.SimpleExtension

Adds a human readable (ISO 8601) timestamp to the log.

	Parameters

	
	log_record (str [https://docs.python.org/3.4/library/stdtypes.html#str], optional) – The record name to use. Defaults to ‘timestamp’.

	separator (str [https://docs.python.org/3.4/library/stdtypes.html#str], optional) – Separator between the date and time. ISO 8601 specifies ‘T’.
Here, we default to ‘ ‘ (blank space) for human readability.

Notes

By default, triggers after every epoch as well as before training
starts, after training finishes, when an error occurs or when training
is interrupted or resumed, as these are all generally useful
circumstances for which to have a timestamp. These can be disabled
by passing False as the appropriate keyword argument; see
SimpleExtension.

	
DEFAULT_LOG_RECORD = 'timestamp'

	

	
do(*args)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L701]

	Does the job of the training extension.

	Parameters

	
	which_callback (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the callback in the context of which do() is
run.

	*args (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – The arguments from the main loop concatenated with additional
arguments from user.

Notes

Subclasses must accept additional positional arguments in their
call signature for this method, even if they are unused.

	
get_timestamp()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L704]

	

	
class blocks.extensions.Timing(prefix='', **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L586]

	Bases: blocks.extensions.SimpleExtension

Add timing information to the log.

This adds data about the time spent in the algorithm’s
process_batch() method as well as the time spent
reading data per batch or epoch. It also reports the time spent
initializing the algorithm.

	Parameters

	prefix (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Prefix to be added to the log record. Defaults to the empty string.

Notes

Add this extension before the Printing extension.

Created with callbacks like every_n_batches this extension
averages the time.

This extension does not enable full profiling information. To see a
full profile of the main loop at the end of training, use the
profile configuration (e.g. by setting BLOCKS_PROFILE=true).

	
do(which_callback, *args)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L628]

	Does the job of the training extension.

	Parameters

	
	which_callback (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the callback in the context of which do() is
run.

	*args (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – The arguments from the main loop concatenated with additional
arguments from user.

Notes

Subclasses must accept additional positional arguments in their
call signature for this method, even if they are unused.

	
class blocks.extensions.TrainingExtension(name=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L19]

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

The base class for training extensions.

An extension is a set of callbacks sharing a joint context that are
invoked at certain stages of the training procedure. These callbacks
typically add a certain functionality to the training procedure,
e.g. running validation on auxiliary datasets or early stopping.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str], optional) – The name of the extension. The names are useful in order to
distinguish between several extensions of the same type that
belongs to the same main loop. By default the name is set to
the name of the class.

	
main_loop

	MainLoop – The main loop to which the extension belongs.

	
name

	str – The name of the extension.

	
after_batch(batch)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L108]

	The callback invoked after a batch is processed.

	Parameters

	batch (object [https://docs.python.org/3.4/library/functions.html#object]) – The data batch just processed.

	
after_epoch()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L120]

	The callback invoked after an epoch is finished.

	
after_training()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L125]

	The callback invoked after training is finished.

	
before_batch(batch)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L96]

	The callback invoked before a batch is processed.

	Parameters

	batch (object [https://docs.python.org/3.4/library/functions.html#object]) – The data batch to be processed.

	
before_epoch()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L91]

	The callback invoked before starting an epoch.

	
before_training()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L86]

	The callback invoked before training is started.

	
dispatch(callback_name, *args)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L58]

	Runs callback with the given name.

The reason for having this method is to allow
the descendants of the TrainingExtension to intercept
callback invocations and do something with them, e.g. block
when certain condition does not hold. The default implementation
simply invokes the callback by its name.

	
main_loop

	

	
on_error(exception)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L75]

	The callback invoked when an error occurs.

	Parameters

	exception (object [https://docs.python.org/3.4/library/functions.html#object]) – Exception occurred during the main loop run.

	
on_interrupt()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L130]

	The callback invoked when training is interrupted.

	
on_resumption()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L70]

	The callback invoked after training is resumed.

	
blocks.extensions.always_true(log)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L174]

	

	
blocks.extensions.callback(func)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L14]

	

	
blocks.extensions.has_done_epochs(log)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/__init__.py#L170]

	

Monitoring extensions

	
class blocks.extensions.monitoring.DataStreamMonitoring(variables, data_stream, updates=None, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/monitoring.py#L61]

	Bases: blocks.extensions.SimpleExtension, blocks.extensions.monitoring.MonitoringExtension

Monitors Theano variables and monitored-quantities on a data stream.

By default monitoring is done before the first and after every epoch.

	Parameters

	
	variables (list of TensorVariable and) – MonitoredQuantity
The variables to monitor. The variable names are used as record
names in the logs.

	updates (list of tuples or OrderedDict [https://docs.python.org/3.4/library/collections.html#collections.OrderedDict] or None) – TensorSharedVariable updates to be performed
during evaluation. This parameter is only for Theano variables.
Be careful not to update any model parameters as this is not
intended to alter your model in any meaningful way. A typical
use case of this option arises when the theano function used
for evaluation contains a call to scan() [https://theano.readthedocs.io/en/latest/library/scan.html#theano.scan] which
might have returned shared variable updates.

	data_stream (instance of DataStream) – The data stream to monitor on. A data epoch is requested
each time monitoring is done.

	
do(callback_name, *args)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/monitoring.py#L92]

	Write the values of monitored variables to the log.

	
class blocks.extensions.monitoring.MonitoringExtension(prefix=None, suffix=None, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/monitoring.py#L16]

	Bases: blocks.extensions.TrainingExtension

A mixin with logic shared by monitoring extensions.

	Parameters

	
	prefix (str [https://docs.python.org/3.4/library/stdtypes.html#str], optional) – The prefix for the log records done by the extension. It is
prepended to the variable names with an underscore as a separator.
If not given, no prefix is added to the names of the observed
variables.

	suffix (str [https://docs.python.org/3.4/library/stdtypes.html#str], optional) – The suffix for the log records done by the extension. It is
appended to the end of variable names with an underscore as a
separator. If not given, no suffix is added the names of the
observed variables.

	
SEPARATOR = '_'

	

	
add_records(log, record_tuples)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/monitoring.py#L53]

	Helper function to add monitoring records to the log.

	
record_name(variable)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/monitoring.py#L49]

	The record name for a variable.

	
class blocks.extensions.monitoring.TrainingDataMonitoring(variables, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/monitoring.py#L100]

	Bases: blocks.extensions.SimpleExtension, blocks.extensions.monitoring.MonitoringExtension

Monitors values of Theano variables on training batches.

Use this extension to monitor a quantity on every training batch
cheaply. It integrates with the training algorithm in order to avoid
recomputing same things several times. For instance, if you are
training a network and you want to log the norm of the gradient on
every batch, the backpropagation will only be done once. By
controlling the frequency with which the do() method is called,
you can aggregate the monitored variables, e.g. only log the gradient
norm average over an epoch.

	Parameters

	variables (list of TensorVariable or) – MonitoredQuantity
The variables or non-Theano quantities to monitor.
The variable names are used as record names in the logs.

Notes

All the monitored variables are evaluated _before_ the parameter
update.

Requires the training algorithm to be an instance of
UpdatesAlgorithm.

	
do(callback_name, *args)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/monitoring.py#L150]

	Initializes the buffer or commits the values to the log.

What this method does depends on from what callback it is called
and with which arguments. When called within before_training, it
initializes the aggregation buffer and instructs the training
algorithm what additional computations should be carried at each
step by adding corresponding updates to it. In most_other cases it
writes aggregated values of the monitored variables to the log. An
exception is when an argument just_aggregate is given: in this
cases it updates the values of monitored non-Theano quantities, but
does not write anything to the log.

	
blocks.extensions.monitoring.take_last(variable)

	

Training

	
class blocks.extensions.training.SharedVariableModifier(parameter, function, num_args=None, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/training.py#L9]

	Bases: blocks.extensions.SimpleExtension

Adjusts shared variable parameter using some function.

Applies a function to compute the new value of a shared parameter each
iteration.

This class can be used to adapt over the training process parameters
like learning rate, momentum, etc.

	Parameters

	
	parameter (TensorSharedVariable) – Shared variable to be adjusted

	function (callable) – A function which outputs a numeric value to which the
given shared variable will be set and may take one or two
arguments.

In the first case, function that takes the total number of
iterations done (int) as an input.

In the second case, it is a function which takes number of
iterations done (int) and old value of the shared variable
(with the same dtype as parameter).

	num_args (int [https://docs.python.org/3.4/library/functions.html#int], optional) – The number of arguments to pass to the function. If unspecified,
it will be inferred. This is useful if you are using function-like
objects for which the arity of the function cannot be inferred.

Notes

This class includes a method function that calls the function
passed in the constructor and a num_args property which computes
the number of arguments to use by inspecting the function object.
Subclasses may override a method called function and/or
the num_args property and instead pass None to the superclass
constructor. This can be used to bypass certain serialization issues
on Legacy Python regarding the unpicklability of instance
method objects.

	
do(which_callback, *args)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/training.py#L66]

	Does the job of the training extension.

	Parameters

	
	which_callback (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the callback in the context of which do() is
run.

	*args (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – The arguments from the main loop concatenated with additional
arguments from user.

Notes

Subclasses must accept additional positional arguments in their
call signature for this method, even if they are unused.

	
function(*args)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/training.py#L63]

	

	
num_args

	

	
class blocks.extensions.training.TrackTheBest(record_name, notification_name=None, choose_best=<built-in function min>, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/training.py#L76]

	Bases: blocks.extensions.SimpleExtension

Check if a log quantity has the minimum/maximum value so far.

	Parameters

	
	record_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the record to track.

	notification_name (str [https://docs.python.org/3.4/library/stdtypes.html#str], optional) – The name for the record to be made in the log when the current
value of the tracked quantity is the best so far. It not given,
‘record_name’ plus “best_so_far” suffix is used.

	choose_best (callable, optional) – A function that takes the current value and the best so far
and return the best of two. By default min() [https://docs.python.org/3.4/library/functions.html#min], which
corresponds to tracking the minimum value.

	
best_name

	str – The name of the status record to keep the best value so far.

	
notification_name

	str – The name of the record written to the log when the current
value of the tracked quantity is the best so far.

Notes

In the likely case that you are relying on another extension to
add the tracked quantity to the log, make sure to place this
extension after the extension that writes the quantity to the log
in the extensions argument to blocks.main_loop.MainLoop.

	
do(which_callback, *args)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/training.py#L119]

	Does the job of the training extension.

	Parameters

	
	which_callback (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the callback in the context of which do() is
run.

	*args (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – The arguments from the main loop concatenated with additional
arguments from user.

Notes

Subclasses must accept additional positional arguments in their
call signature for this method, even if they are unused.

Serialization

	
class blocks.extensions.saveload.Checkpoint(path, parameters=None, save_separately=None, save_main_loop=True, use_cpickle=False, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/saveload.py#L16]

	Bases: blocks.extensions.SimpleExtension

Saves a pickled version of the main loop to the disk.

The pickled main loop can be later reloaded and training can be
resumed.

Makes a SAVED_TO record in the log with the serialization destination
in the case of success and None in the case of failure. The
value of the record is a tuple of paths to which saving was done
(there can be more than one if the user added a condition
with an argument, see do() docs).

	Parameters

	
	path (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The destination path for pickling.

	parameters (list [https://docs.python.org/3.4/library/stdtypes.html#list], optional) – The parameters to save separately. If None, the parameters from
the model (main_loop.model.parameters) are saved.

	save_separately (list of str, optional) – The list of the main loop’s attributes to be saved (copied)
in a separate file in the tar archive. It may be used for example
to save the log separetely. The name of the attribute will be used
as name in the tar file.

	save_main_loop (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Choose whether to save the main loop or not. This can be useful
for example if you are only interested in saving the parameters,
but not the whole main loop. Defaults to True.

	use_cpickle (bool [https://docs.python.org/3.4/library/functions.html#bool]) – See documentation of dump().

Notes

Using pickling for saving the whole main loop object comes with
certain limitations:

	Theano computation graphs build in the GPU-mode
(theano.config.device == “gpu”) can not be used in the usual mode
(and vice-versa). Therefore using this extension binds you to using
only one kind of device.

	
do(callback_name, *args)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/saveload.py#L69]

	Pickle the main loop object to the disk.

If *args contain an argument from user, it is treated as
saving path to be used instead of the one given at the
construction stage.

	
class blocks.extensions.saveload.Load(path, load_iteration_state=False, load_log=False, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/saveload.py#L108]

	Bases: blocks.extensions.SimpleExtension

Loads a saved checkpoint into the main loop.

Makes a LOADED_FROM record in the log with the dump path.

	Parameters

	
	path (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The path to the folder with dump.

	load_iteration_state (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, load the iteration state. This can be useful when your
model has very long epochs, and you want to resume when you were in
the middle of one. Defaults to False.

	load_log (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, load the old log and continue logging from there.
Convenient because you end up with a single log of the entire
training history. Defaults to False.

Notes

Requires the model to be created entirely using bricks, with a unique
path/name for each brick, so that the parameters can be matched to
their values.

In order to load the iteration state and the log, the saved model needs
to be unpickled. Note that resuming training this way is still not
entirely seamless because e.g. extensions will not be reloaded.

	
do(*args, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/saveload.py#L156]

	Does the job of the training extension.

	Parameters

	
	which_callback (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the callback in the context of which do() is
run.

	*args (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – The arguments from the main loop concatenated with additional
arguments from user.

Notes

Subclasses must accept additional positional arguments in their
call signature for this method, even if they are unused.

	
load_to(main_loop)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/saveload.py#L145]

	

Filter

	
class blocks.filter.VariableFilter(roles=None, bricks=None, each_role=False, name=None, name_regex=None, theano_name=None, theano_name_regex=None, call_id=None, applications=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/filter.py#L41]

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

Filters Theano variables based on a range of criteria.

	Parameters

	
	roles (list of VariableRole instances, optional) – Matches any variable which has one of the roles given.

	bricks (list of Brick classes or list of) – instances of Brick, optional
Matches any variable that is instance of any of the given classes
or that is owned by any of the given brick instances.

	each_role (bool [https://docs.python.org/3.4/library/functions.html#bool], optional) – If True, the variable needs to have all given roles. If
False, a variable matching any of the roles given will be
returned. False by default.

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str], optional) – The variable name. The Blocks name (i.e.
x.tag.name) is used.

	name_regex (str [https://docs.python.org/3.4/library/stdtypes.html#str], optional) – A regular expression for the variable name. The Blocks name (i.e.
x.tag.name) is used.

	theano_name (str [https://docs.python.org/3.4/library/stdtypes.html#str], optional) – The variable name. The Theano name (i.e.
x.name) is used.

	theano_name_regex (str [https://docs.python.org/3.4/library/stdtypes.html#str], optional) – A regular expression for the variable name. The Theano name (i.e.
x.name) is used.

	call_id (str [https://docs.python.org/3.4/library/stdtypes.html#str], optional) – The call identifier as written in ApplicationCall
metadata attribute.

	applications (list of Application) – or BoundApplication, optional
Matches a variable that was produced by any of the applications
given.

Notes

Note that only auxiliary variables, parameters, inputs and outputs are
tagged with the brick that created them. Other Theano variables that
were created in the process of applying a brick will be filtered out.

Note that technically speaking, bricks are able to have non-shared
variables as parameters. For example, we can use the transpose of
another weight matrix as the parameter of a particular brick. This
means that in some unusual cases, filtering by the PARAMETER
role alone will not be enough to retrieve all trainable parameters in
your model; you will need to filter out the shared variables from these
(using e.g. is_shared_variable()).

Examples

>>> from blocks.bricks import MLP, Linear, Logistic, Identity
>>> from blocks.roles import BIAS
>>> mlp = MLP(activations=[Identity(), Logistic()], dims=[20, 10, 20])
>>> from theano import tensor
>>> x = tensor.matrix()
>>> y_hat = mlp.apply(x)
>>> from blocks.graph import ComputationGraph
>>> cg = ComputationGraph(y_hat)
>>> from blocks.filter import VariableFilter
>>> var_filter = VariableFilter(roles=[BIAS],
... bricks=[mlp.linear_transformations[0]])
>>> var_filter(cg.variables)
[b]

	
blocks.filter.get_annotation(var, cls)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/filter.py#L9]

	A helper function to retrieve an annotation of a particular type.

Notes

This function returns the first annotation of a particular type. If
there are multiple–there shouldn’t be–it will ignore them.

	
blocks.filter.get_application_call(var)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/filter.py#L32]

	Retrieves the application call that created this variable.

See get_annotation().

	
blocks.filter.get_brick(var)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/filter.py#L23]

	Retrieves the brick that created this variable.

See get_annotation().

Computational graph

	
class blocks.graph.ComputationGraph(outputs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/graph/__init__.py#L28]

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

Encapsulates a managed Theano computation graph.

This implies that it not only contains the variables required to
compute the given outputs, but also all the auxiliary variables and
updates that were attached to these variables through the annotation
system.

All variables are presented in topologically sorted order according to
the apply nodes that they are an input to.

	Parameters

	outputs ((list of) TensorVariable) – The output(s) of the computation graph.

	
inputs

	list of TensorVariable – The inputs of the computation graph. This does not include shared
variables and constants.

	
shared_variables

	list of TensorSharedVariable – All the shared variables in the graph.

	
parameters

	list of TensorSharedVariable – All the shared variables which have the PARAMETER role.

	
outputs

	list of TensorVariable – The outputs of the computations graph (as passed to the
constructor).

	
auxiliary_variables

	list of TensorVariable – All variables which have the AUXILIARY role.

	
intermediary_variables

	list of TensorVariable – Any variable that is not part of inputs or outputs.

	
variables

	list of TensorVariable – All variables (including auxiliary) in the managed graph.

	
scans

	list of Scan – All Scan ops used in this computation graph.

	
scan_variables

	list of TensorVariable – All variables of the inner graphs of Scan ops.

	
updates

	TensorSharedVariable updates – All the updates found attached to the annotations.

	
auxiliary_variables

	

	
dict_of_inputs()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/graph/__init__.py#L160]

	Return a mapping from an input name to the input.

	
get_snapshot(data)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/graph/__init__.py#L267]

	Evaluate all role-carrying Theano variables on given data.

	Parameters

	data (dict of (data source, data) pairs) – Data for input variables. The sources should match with the
names of the input variables.

	Returns

	

	Return type

	Dictionary of (variable, variable value on given data) pairs.

	
get_theano_function(additional_updates=None, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/graph/__init__.py#L251]

	Create Theano function from the graph contained.

	Parameters

	**kwargs (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – Keyword arguments to theano.function.
Useful for specifying compilation modes or profiling.

	
has_inputs(variable)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/graph/__init__.py#L292]

	Check if a variable depends on input variables.

	Returns

	True if the given variable depends on input variables,
False otherwise.

	Return type

	bool [https://docs.python.org/3.4/library/functions.html#bool]

	
inputs

	Inputs to the graph, excluding constants and shared variables.

	
intermediary_variables

	

	
parameters

	

	
replace(replacements)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/graph/__init__.py#L164]

	Replace certain variables in the computation graph.

	Parameters

	replacements (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – The mapping from variables to be replaced to the corresponding
substitutes.

Examples

>>> import theano
>>> from theano import tensor, function
>>> x = tensor.scalar('x')
>>> y = x + 2
>>> z = y + 3
>>> a = z + 5

Let’s suppose we have dependent replacements like

>>> replacements = {y: x * 2, z: y * 3}
>>> cg = ComputationGraph([a])
>>> theano.pprint(a)
'(((x + TensorConstant{2}) + TensorConstant{3}) +
TensorConstant{5})'
>>> cg_new = cg.replace(replacements)
>>> theano.pprint(
... cg_new.outputs[0])
'(((x * TensorConstant{2}) * TensorConstant{3}) +
TensorConstant{5})'

First two sums turned into multiplications

>>> float(function(cg_new.inputs, cg_new.outputs)(3.)[0])
23.0

	
scan_variables

	Variables of Scan ops.

	
shared_variables

	

	
blocks.graph.apply_dropout(computation_graph, variables, drop_prob, rng=None, seed=None, custom_divisor=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/graph/__init__.py#L426]

	Apply dropout to specified variables in a graph.

	Parameters

	
	computation_graph (instance of ComputationGraph) – The computation graph.

	variables (list of TensorVariable) – Variables to be dropped out.

	drop_prob (float [https://docs.python.org/3.4/library/functions.html#float]) – Probability of dropping out. If you want to apply the dropout
with different probabilities for different layers, call it
several times.

	rng (MRG_RandomStreams [https://theano.readthedocs.io/en/latest/library/sandbox/rng_mrg.html#theano.sandbox.rng_mrg.MRG_RandomStreams]) – Random number generator.

	seed (int [https://docs.python.org/3.4/library/functions.html#int]) – Random seed to be used if rng was not specified.

	custom_divisor (float [https://docs.python.org/3.4/library/functions.html#float] or None [https://docs.python.org/3.4/library/constants.html#None], optional) – Divide dropped variables by a given scalar value. If None,
(default) dropped variables will be divided by (1 - drop_prob)
which is equivalent to scaling by (1 - drop_prob) at test
time as recommended in [DROPOUT].

	Returns

	dropped_computation_graph – A new computation graph with dropout applied to the specified
variables. In order to train with, or monitor, the outputs
of the original computation graph with dropout applies, use
the variables contained in dropped_computation_graph.outputs.

	Return type

	instance of ComputationGraph

Notes

For more information, see [DROPOUT].

	DROPOUT(1,2)

	Hinton et al. Improving neural networks by preventing
co-adaptation of feature detectors, arXiv:1207.0580.

Examples

>>> import numpy
>>> from theano import tensor, function
>>> from blocks.bricks import MLP, Identity
>>> from blocks.filter import VariableFilter
>>> from blocks.initialization import Constant
>>> from blocks.roles import INPUT
>>> linear = MLP([Identity(), Identity()], [2, 10, 2],
... weights_init=Constant(1), biases_init=Constant(2))
>>> x = tensor.matrix('x')
>>> y = linear.apply(x)
>>> cg = ComputationGraph(y)

We are going to drop out all the input variables

>>> inputs = VariableFilter(roles=[INPUT])(cg.variables)

Here we apply dropout with default setting to our computation graph

>>> cg_dropout = apply_dropout(cg, inputs, 0.5)

Dropped out variables have role DROPOUT and are tagged with
replacement_of tag. Let’s filter these variables and check if they
have the links to original ones.

>>> dropped_out = VariableFilter(roles=[DROPOUT])(cg_dropout.variables)
>>> inputs_referenced = [var.tag.replacement_of for var in dropped_out]
>>> set(inputs) == set(inputs_referenced)
True

Compiling theano functions to forward propagate in original and dropped
out graphs

>>> fprop = function(cg.inputs, cg.outputs[0])
>>> fprop_dropout = function(cg_dropout.inputs, cg_dropout.outputs[0])

Initialize an MLP and apply these functions

>>> linear.initialize()
>>> fprop(numpy.ones((3, 2),
... dtype=theano.config.floatX))
array([[42., 42.],
 [42., 42.],
 [42., 42.]]...
>>> fprop_dropout(numpy.ones((3, 2),
... dtype=theano.config.floatX))
array([[0., 0.],
 [0., 0.],
 [0., 0.]]...

And after the second run answer is different

>>> fprop_dropout(numpy.ones((3, 2),
... dtype=theano.config.floatX))
array([[0., 52.],
 [100., 0.],
 [0., 0.]]...

	
blocks.graph.apply_noise(computation_graph, variables, level, seed=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/graph/__init__.py#L313]

	Add Gaussian noise to certain variable of a computation graph.

	Parameters

	
	computation_graph (instance of ComputationGraph) – The computation graph.

	variables (TensorVariable) – Variables to add noise to.

	level (float [https://docs.python.org/3.4/library/functions.html#float]) – Noise level.

	seed (int [https://docs.python.org/3.4/library/functions.html#int], optional) – The seed with which
MRG_RandomStreams [https://theano.readthedocs.io/en/latest/library/sandbox/rng_mrg.html#theano.sandbox.rng_mrg.MRG_RandomStreams] is initialized,
is set to 1 by default.

	
blocks.graph.collect_parameters(computation_graph, parameters)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/graph/__init__.py#L340]

	Replace parameters with a single shared variable.

This can be useful if you need to calculate the full Hessian of a
computational graph. It replaces parameters with slices of a single
large vectors like

>>> from blocks.utils import shared_floatx
>>> W1 = shared_floatx(numpy.random.rand(10, 10))
>>> W2 = shared_floatx(numpy.random.rand(10, 10))
>>> all_parameters = shared_floatx(numpy.concatenate(
... [W1.get_value().flatten(), W2.get_value().flatten()]))
>>> W1 = all_parameters[:W1.size]
>>> W2 = all_parameters[W1.size:]

	Parameters

	
	computation_graph (ComputationGraph instance) – The managed Theano graph in which to collect parameters.

	parameters (list of Theano shared variables) – The parameters whose values should be collected.

	Returns

	A new Theano graph which has all the given parameters collected
into a single large shared variable.

	Return type

	ComputationGraph instance

Notes

Note that this replacement makes the training of the model
significantly slower because of the large amount of Theano’s
set_subtensor calls needed to train the model.

Examples

>>> from blocks.bricks import MLP, Logistic
>>> from blocks.bricks.cost import SquaredError
>>> from theano import tensor
>>> x = tensor.matrix()
>>> mlp = MLP(activations=[Logistic(), Logistic()],
... dims=[784, 100, 784])
>>> cost = SquaredError().apply(x, mlp.apply(x))
>>> cg = ComputationGraph(cost)
>>> new_cg = collect_parameters(cg, cg.shared_variables)

The new graph only has a single shared variable. This variable receives
the COLLECTOR role.

>>> new_cg.shared_variables
[collected_parameters]

The bricks’ variables have been replaced with reshaped segments of this
single shared variable. These replacements are given the
COLLECTED role.

>>> from blocks.filter import VariableFilter
>>> from blocks.roles import PARAMETER
>>> var_filter = VariableFilter(roles=[COLLECTED])
>>> var_filter(new_cg.variables)
[Reshape{1}.0, Reshape{1}.0, Reshape{2}.0, Reshape{2}.0]

Parameter initialization

	
class blocks.initialization.Constant(constant)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/initialization.py#L52]

	Bases: blocks.initialization.NdarrayInitialization

Initialize parameters to a constant.

The constant may be a scalar or a ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of any shape
that is broadcastable with the requested parameter arrays.

	Parameters

	constant (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The initialization value to use. Must be a scalar or an ndarray (or
compatible object, such as a nested list) that has a shape that is
broadcastable with any shape requested by initialize.

	
generate(rng, shape)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/initialization.py#L69]

	Generate an initial set of parameters from a given distribution.

	Parameters

	
	rng (numpy.random.RandomState [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState]) –

	shape (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – A shape tuple for the requested parameter array shape.

	Returns

	output – An ndarray with values drawn from the distribution specified by
this object, of shape shape, with dtype
config.floatX [https://theano.readthedocs.io/en/latest/library/config.html#config.floatX].

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
class blocks.initialization.Identity(mult=1)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/initialization.py#L145]

	Bases: blocks.initialization.NdarrayInitialization

Initialize to the identity matrix.

Only works for 2D arrays. If the number of columns is not equal to the
number of rows, the array will be truncated or padded with zeros.

	Parameters

	mult (float [https://docs.python.org/3.4/library/functions.html#float], optional) – Multiply the identity matrix with a scalar. Defaults to 1.

	
generate(rng, shape)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/initialization.py#L160]

	Generate an initial set of parameters from a given distribution.

	Parameters

	
	rng (numpy.random.RandomState [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState]) –

	shape (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – A shape tuple for the requested parameter array shape.

	Returns

	output – An ndarray with values drawn from the distribution specified by
this object, of shape shape, with dtype
config.floatX [https://theano.readthedocs.io/en/latest/library/config.html#config.floatX].

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
class blocks.initialization.IsotropicGaussian(std=1, mean=0)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/initialization.py#L78]

	Bases: blocks.initialization.NdarrayInitialization

Initialize parameters from an isotropic Gaussian distribution.

	Parameters

	
	std (float [https://docs.python.org/3.4/library/functions.html#float], optional) – The standard deviation of the Gaussian distribution. Defaults to 1.

	mean (float [https://docs.python.org/3.4/library/functions.html#float], optional) – The mean of the Gaussian distribution. Defaults to 0

Notes

Be careful: the standard deviation goes first and the mean goes
second!

	
generate(rng, shape)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/initialization.py#L98]

	Generate an initial set of parameters from a given distribution.

	Parameters

	
	rng (numpy.random.RandomState [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState]) –

	shape (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – A shape tuple for the requested parameter array shape.

	Returns

	output – An ndarray with values drawn from the distribution specified by
this object, of shape shape, with dtype
config.floatX [https://theano.readthedocs.io/en/latest/library/config.html#config.floatX].

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
class blocks.initialization.NdarrayInitialization[source] [https://github.com/mila-udem/blocks/blob/master/blocks/initialization.py#L13]

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

Base class specifying the interface for ndarray initialization.

	
generate(rng, shape)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/initialization.py#L15]

	Generate an initial set of parameters from a given distribution.

	Parameters

	
	rng (numpy.random.RandomState [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState]) –

	shape (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – A shape tuple for the requested parameter array shape.

	Returns

	output – An ndarray with values drawn from the distribution specified by
this object, of shape shape, with dtype
config.floatX [https://theano.readthedocs.io/en/latest/library/config.html#config.floatX].

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
initialize(var, rng, shape=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/initialization.py#L34]

	Initialize a shared variable with generated parameters.

	Parameters

	
	var (object [https://docs.python.org/3.4/library/functions.html#object]) – A Theano shared variable whose value will be set with values
drawn from this NdarrayInitialization instance.

	rng (numpy.random.RandomState [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState]) –

	shape (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – A shape tuple for the requested parameter array shape.

	
class blocks.initialization.Orthogonal(scale=1)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/initialization.py#L170]

	Bases: blocks.initialization.NdarrayInitialization

Initialize a random orthogonal matrix.

Only works for 2D arrays.

	Parameters

	scale (float [https://docs.python.org/3.4/library/functions.html#float], optional) – Multiply the resulting matrix with a scalar. Defaults to 1.
For a discussion of the importance of scale for training time
and generalization refer to [Saxe2013].

	Saxe2013

	Saxe, A.M., McClelland, J.L., Ganguli, S., 2013.,
Exact solutions to the nonlinear dynamics of learning in deep
linear neural networks,
arXiv:1312.6120 [cond-mat, q-bio, stat].

	
generate(rng, shape)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/initialization.py#L191]

	Generate an initial set of parameters from a given distribution.

	Parameters

	
	rng (numpy.random.RandomState [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState]) –

	shape (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – A shape tuple for the requested parameter array shape.

	Returns

	output – An ndarray with values drawn from the distribution specified by
this object, of shape shape, with dtype
config.floatX [https://theano.readthedocs.io/en/latest/library/config.html#config.floatX].

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
class blocks.initialization.Sparse(num_init, weights_init, sparse_init=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/initialization.py#L220]

	Bases: blocks.initialization.NdarrayInitialization

Initialize only a fraction of the weights, row-wise.

	Parameters

	
	num_init (int [https://docs.python.org/3.4/library/functions.html#int] or float [https://docs.python.org/3.4/library/functions.html#float]) – If int, this is the number of weights to initialize per row. If
float, it’s the fraction of the weights per row to initialize.

	weights_init (NdarrayInitialization instance) – The initialization scheme to initialize the weights with.

	sparse_init (NdarrayInitialization instance, optional) – What to set the non-initialized weights to (0. by default)

	
generate(rng, shape)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/initialization.py#L242]

	Generate an initial set of parameters from a given distribution.

	Parameters

	
	rng (numpy.random.RandomState [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState]) –

	shape (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – A shape tuple for the requested parameter array shape.

	Returns

	output – An ndarray with values drawn from the distribution specified by
this object, of shape shape, with dtype
config.floatX [https://theano.readthedocs.io/en/latest/library/config.html#config.floatX].

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
class blocks.initialization.SparseND(axis, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/initialization.py#L260]

	Bases: blocks.initialization.Sparse

Initialize only a fraction of the weights with configurable axes.

	Parameters

	axis (int [https://docs.python.org/3.4/library/functions.html#int] or sequence) – Which axis or axes are to be treated as a “unit” for the purpose
of the number of elements initialized. For example, an axis of
(0, 1) when initializing a 4D tensor W will treat the first two
axes of the weight tensor as a grid and initialize num_init
elements of W[0, 0, :, :], another num_init elements of
W[0, 1, :, :], and so on.

Notes

See Sparse for documentation of other arguments.

	
generate(rng, shape)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/initialization.py#L282]

	Generate an initial set of parameters from a given distribution.

	Parameters

	
	rng (numpy.random.RandomState [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState]) –

	shape (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – A shape tuple for the requested parameter array shape.

	Returns

	output – An ndarray with values drawn from the distribution specified by
this object, of shape shape, with dtype
config.floatX [https://theano.readthedocs.io/en/latest/library/config.html#config.floatX].

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
class blocks.initialization.Uniform(mean=0.0, width=None, std=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/initialization.py#L106]

	Bases: blocks.initialization.NdarrayInitialization

Initialize parameters from a uniform distribution.

	Parameters

	
	mean (float [https://docs.python.org/3.4/library/functions.html#float], optional) – The mean of the uniform distribution (i.e. the center of mass for
the density function); Defaults to 0.

	width (float [https://docs.python.org/3.4/library/functions.html#float], optional) – One way of specifying the range of the uniform distribution. The
support will be [mean - width/2, mean + width/2]. Exactly one
of width or std must be specified.

	std (float [https://docs.python.org/3.4/library/functions.html#float], optional) – An alternative method of specifying the range of the uniform
distribution. Chooses the width of the uniform such that random
variates will have a desired standard deviation. Exactly one of
width or std must be specified.

	
generate(rng, shape)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/initialization.py#L136]

	Generate an initial set of parameters from a given distribution.

	Parameters

	
	rng (numpy.random.RandomState [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState]) –

	shape (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – A shape tuple for the requested parameter array shape.

	Returns

	output – An ndarray with values drawn from the distribution specified by
this object, of shape shape, with dtype
config.floatX [https://theano.readthedocs.io/en/latest/library/config.html#config.floatX].

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

Logging

Log has two different backends configurable in .blocksrc,
see Configuration.

Dictionary backend

	
class blocks.log.log.TrainingLog[source] [https://github.com/mila-udem/blocks/blob/master/blocks/log/log.py#L105]

	Bases: collections.defaultdict [https://docs.python.org/3.4/library/collections.html#collections.defaultdict], blocks.log.log.TrainingLogBase

Training log using a defaultdict as backend.

Notes

For analysis of the logs, it can be useful to convert the log to a
Pandas [http://pandas.pydata.org] data frame:

df = DataFrame.from_dict(log, orient='index')

	
class blocks.log.log.TrainingLogBase(uuid=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/log/log.py#L11]

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

Base class for training log.

A training log stores the training timeline, statistics and other
auxiliary information. Training logs can use different backends e.g.
in-memory Python objects or an SQLite database.

Information is stored similar to a nested dictionary, so use
log[time][key] to read data. An entry without stored data will
return an empty dictionary-like object that can be written to,
log[time][key] = value.

Depending on the backend, log[time] = {'key': 'value'} could fail.
Use log[time].update({'key': 'value'}) for compatibility across
backends.

In addition to the set of records displaying training dynamics, a
training log has a status attribute, which is a dictionary with
data that is not bound to a particular time.

Warning

Changes to mutable objects might not be reflected in the log,
depending on the backend. So don’t use
log.status['key'].append(...), use log.status['key'] = ...
instead.

	Parameters

	uuid (uuid.UUID [https://docs.python.org/3.4/library/uuid.html#uuid.UUID], optional) – The UUID of this log. For persistent log backends, passing the UUID
will result in an old log being loaded. Otherwise a new, random
UUID will be created.

	
status

	dict – A dictionary with data representing the current state of training.
By default it contains iterations_done, epochs_done and
_epoch_ends (a list of time stamps when epochs ended).

	
current_row

	

	
h_uuid

	Return a hexadecimal version of the UUID bytes.

This is necessary to store ids in an SQLite database.

	
last_epoch_row

	

	
previous_row

	

	
resume()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/log/log.py#L75]

	Resume a log by setting a new random UUID.

Keeps a record of the old log that this is a continuation of. It
copies the status of the old log into the new log.

Sqlite backend

	
class blocks.log.sqlite.SQLiteEntry(log, time)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/log/sqlite.py#L218]

	Bases: _abcoll.MutableMapping

Store log entries in an SQLite database.

Each entry is a row with the columns uuid, time (iterations done),
key and value. Note that SQLite only supports numeric values,
strings, and bytes (e.g. the uuid column), all other objects will be
pickled before being stored.

Entries are automatically retrieved from ancestral logs (i.e. logs that
were resumed from).

	
class blocks.log.sqlite.SQLiteLog(database=None, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/log/sqlite.py#L103]

	Bases: blocks.log.log.TrainingLogBase, _abcoll.Mapping

Training log using SQLite as a backend.

	Parameters

	
	database (str [https://docs.python.org/3.4/library/stdtypes.html#str], optional) – The database (file) to connect to. Can also be :memory:. See
sqlite3.connect() [https://docs.python.org/3.4/library/sqlite3.html#sqlite3.connect] for details. Uses config.sqlite_database
by default.

	**kwargs – Arguments to pass to TrainingLogBase

	
conn

	

	
class blocks.log.sqlite.SQLiteStatus(log)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/log/sqlite.py#L180]

	Bases: _abcoll.MutableMapping

	
blocks.log.sqlite.adapt_ndarray(obj)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/log/sqlite.py#L59]

	Convert NumPy scalars to floats before storing in SQLite.

This makes it easier to inspect the database, and speeds things up.

	Parameters

	obj (ndarray) – A NumPy array.

	Returns

	If the array was a scalar, it returns a floating point number.
Otherwise it binarizes the NumPy array using adapt_obj()

	Return type

	float [https://docs.python.org/3.4/library/functions.html#float] or memoryview [https://docs.python.org/3.4/library/stdtypes.html#memoryview]

	
blocks.log.sqlite.adapt_obj(obj)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/log/sqlite.py#L35]

	Binarize objects to be stored in an SQLite database.

	Parameters

	obj (object [https://docs.python.org/3.4/library/functions.html#object]) – Any picklable object.

	Returns

	blob – A buffer (Python 2) or memoryview (Python 3) of the pickled object
that can be stored as a BLOB in an SQLite database.

	Return type

	memoryview [https://docs.python.org/3.4/library/stdtypes.html#memoryview]

Main loop

	
class blocks.main_loop.MainLoop(algorithm, data_stream, model=None, log=None, log_backend=None, extensions=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/main_loop.py#L45]

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

The standard main loop of Blocks.

In the MainLoop a model is trained by a training algorithm using data
extracted from a data stream. This process is scrupulously documented
in a log object.

The MainLoop itself does very little: only fetching the data from the
data stream and feeding it to the algorithm. It expects the extensions
to do most of the job. A respective callback of every extension is
called at every stage of training. The extensions should communicate
between themselves and with the main loop object by means of making
records in the log. For instance in order to stop the training
procedure an extension can make a record
training_finish_requested=True in the log. The main loop checks for
such a record after every batch and every epoch and terminates when
finds it.

The MainLoop also handles interruption signal SIGINT for you (e.g.
the one program receives when you press Ctrl + C). It notes this event
in the log and at the next iteration or epoch end the main loop will
be gracefully finished, with calling all necessary extension callbacks
and waiting until they finish.

	Parameters

	
	algorithm (instance of TrainingAlgorithm) – The training algorithm.

	data_stream (instance of DataStream.) – The data stream. Should support AbstractDataStream
interface from Fuel.

	model (instance of ComputationGraph, optional) – An annotated computation graph, typically represented
by ComputationGraph or Model object. The main
loop object uses the model only for optional sanity checks, it is
here mainly for the main loop extensions.

	log (instance of TrainingLog, optional) – The log. When not given, a TrainingLog is created.

	log_backend (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The backend to use for the log. Currently python and sqlite are
available. If not given, config.log_backend will be used. Ignored
if log is passed.

	extensions (list of TrainingExtension instances) – The training extensions. Will be called in the same order as given
here.

	
find_extension(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/main_loop.py#L201]

	Find an extension with a given name.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the extension looked for.

Notes

Will crash if there no or several extension found.

	
iteration_state

	Quick access to the (data stream, epoch iterator) pair.

	
model

	

	
run()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/main_loop.py#L137]

	Starts the main loop.

The main loop ends when a training extension makes
a training_finish_requested record in the log.

	
status

	A shortcut for self.log.status.

	
exception blocks.main_loop.TrainingFinish[source] [https://github.com/mila-udem/blocks/blob/master/blocks/main_loop.py#L306]

	Bases: exceptions.Exception

An exception raised when a finish request is found in the log.

Model

A model in Blocks is simply an annotated computation graph. The class
Model extends blocks.graph.ComputationGraph :class:,
which is able to handle annotations and roles in general, but is
deliberately made unaware of specific annotations that a Theano graph
created by Blocks typically has, such as bricks and application calls. The
Model adds this functionality. Using Model you can do
things like query all the bricks used to build the computation graph,
request “hierarchical names” of the parameters (a hierarchical name is a
path-like string which in addition to the parameter’s name contains names
of the bricks on the path from a root brick to the brick that owns the
parameters, e.g. /mlp/linear/W).

For more information, see Model docstring.

	
class blocks.model.Model(*args, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/model.py#L29]

	Bases: blocks.graph.ComputationGraph

Handles annotations in Blocks-built computation graphs.

Use this class to handle your Blocks-created computation graph.

Examples

>>> from theano import tensor
>>> from blocks.bricks import MLP, Tanh
>>> x = tensor.matrix('x')
>>> mlp = MLP([Tanh(), Tanh()], [10, 10, 10])
>>> y = mlp.apply(x)
>>> model = Model(y)

With Model you can get access to the brick hierarchy. The
brick hierarchy is defined by children attributes that every brick
has. The bricks that are not children of other bricks are called top
bricks. It is often useful to have access to top bricks of a brick
hierarchy used to build a computation graph, and here is how you can do
it:

>>> model.get_top_bricks()
[<blocks.bricks.sequences.MLP object at ...]

You can also get “hierarchical” names for the parameters,
which encode the position of the owning brick in the
brick hierarchy.

>>> model.get_parameter_dict()
OrderedDict([('/mlp/linear_1.b', b), ('/mlp/linear_0.b', b),
('/mlp/linear_0.W', W), ('/mlp/linear_1.W', W)])

	
check_sanity(algorithm)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/model.py#L88]

	

	
get_parameter_dict()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/model.py#L95]

	Returns parameters with their hierarchical names.

The parameter names are formed from positions of their owner bricks
in the bricks hierarchy. The variable names are used for the
parameters that do not belong to any brick.

	Returns

	parameter_dict – A dictionary of (hierarchical name, shared variable) pairs.

	Return type

	dict [https://docs.python.org/3.4/library/stdtypes.html#dict]

	
get_parameter_values()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/model.py#L110]

	Return the values of model parameters.

The same hierarhical names as in get_parameter_dict() are
used to uniquely identify parameters.

	Returns

	parameter_values – Dictionary of (hierarchical name, ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray])
pairs.

	Return type

	OrderedDict

	
get_top_bricks()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/model.py#L158]

	Get the bricks that do not have parents.

	Returns

	bricks

	Return type

	list of Brick

	
set_parameter_values(parameter_values)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/model.py#L127]

	Set the values of model parameters.

The same hierarhical names as in get_parameter_dict() are
used to uniquely identify parameters.

	Parameters

	parameter_values (OrderedDict) – Dictionary of (hierarchical name, ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray])
pairs.

Variable roles

	
blocks.roles.add_role(var, role)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/roles.py#L4]

	Add a role to a given Theano variable.

	Parameters

	
	var (TensorVariable) – The variable to assign the new role to.

	role (VariableRole instance) –

Notes

Some roles are subroles of others (e.g. WEIGHT is a subrole
of PARAMETER). This function will not add a role if a more
specific role has already been added. If you need to replace a role
with a parent role (e.g. replace WEIGHT with
PARAMETER) you must do so manually.

Examples

>>> from theano import tensor
>>> W = tensor.matrix()
>>> from blocks.roles import PARAMETER, WEIGHT
>>> add_role(W, PARAMETER)
>>> print(*W.tag.roles)
PARAMETER
>>> add_role(W, WEIGHT)
>>> print(*W.tag.roles)
WEIGHT
>>> add_role(W, PARAMETER)
>>> print(*W.tag.roles)
WEIGHT

Roles

All roles are implemented as subclasses of VariableRole.

	
class blocks.roles.VariableRole[source] [https://github.com/mila-udem/blocks/blob/master/blocks/roles.py#L65]

	Base class for all variable roles.

The actual roles are instances of the different subclasses of
VariableRole. They are:

	
blocks.roles.INPUT = INPUT

	The input of a Brick

	
blocks.roles.OUTPUT = OUTPUT

	The output of a Brick

	
blocks.roles.AUXILIARY = AUXILIARY

	Variables added to the graph as annotations

	
blocks.roles.COST = COST

	A scalar cost that can be used to train or regularize

	
blocks.roles.PARAMETER = PARAMETER

	A parameter of the model

	
blocks.roles.WEIGHT = WEIGHT

	The weight matrices of linear transformations

	
blocks.roles.BIAS = BIAS

	Biases of linear transformations

	
blocks.roles.FILTER = FILTER

	The filters (kernels) of a convolution operation

Brick selectors

	
class blocks.select.Path(nodes)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/select.py#L20]

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

Encapsulates a path in a hierarchy of bricks.

Currently the only allowed elements of paths are names of the bricks
and names of parameters. The latter can only be put in the end of the
path. It is planned to support regular expressions in some way later.

	Parameters

	nodes (list [https://docs.python.org/3.4/library/stdtypes.html#list] or tuple of path nodes) – The nodes of the path.

	
nodes

	tuple – The tuple containing path nodes.

	
class BrickName[source] [https://github.com/mila-udem/blocks/blob/master/blocks/select.py#L43]

	Bases: str [https://docs.python.org/3.4/library/stdtypes.html#str]

	
part()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/select.py#L45]

	

	
class ParameterName[source] [https://github.com/mila-udem/blocks/blob/master/blocks/select.py#L48]

	Bases: str [https://docs.python.org/3.4/library/stdtypes.html#str]

	
part()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/select.py#L50]

	

	
parameter_separator = '.'

	

	
static parse(string)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/select.py#L70]

	Constructs a path from its string representation.

Todo

More error checking.

	Parameters

	string (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – String representation of the path.

	
separator = '/'

	

	
separator_re = <_sre.SRE_Pattern object>

	

	
class blocks.select.Selector(bricks)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/select.py#L103]

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

Selection of elements of a hierarchy of bricks.

	Parameters

	bricks (list of Brick) – The bricks of the selection.

	
get_parameters(parameter_name=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/select.py#L160]

	Returns parameters from selected bricks and their descendants.

	Parameters

	parameter_name (Path.ParameterName, optional) – If given, only parameters with a name attribute equal to
parameter_name are returned.

	Returns

	parameters – A dictionary of (path, parameter) pairs, where path is
a string representation of the path in the brick hierarchy
to the parameter (i.e. the slash-delimited path to the brick
that owns the parameter, followed by a dot, followed by the
parameter’s name), and parameter is the Theano variable
representing the parameter.

	Return type

	OrderedDict

Examples

>>> from blocks.bricks import MLP, Tanh
>>> mlp = MLP([Tanh(), Tanh(), Tanh()], [5, 7, 11, 2])
>>> mlp.allocate()
>>> selector = Selector([mlp])
>>> selector.get_parameters()
OrderedDict([('/mlp/linear_0.W', W), ('/mlp/linear_0.b', b),
('/mlp/linear_1.W', W), ('/mlp/linear_1.b', b),
('/mlp/linear_2.W', W), ('/mlp/linear_2.b', b)])

Or, select just the weights of the MLP by passing the parameter
name W:

>>> w_select = Selector([mlp])
>>> w_select.get_parameters('W')
OrderedDict([('/mlp/linear_0.W', W), ('/mlp/linear_1.W', W),
('/mlp/linear_2.W', W)])

	
select(path)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/select.py#L117]

	Select a subset of current selection matching the path given.

Warning

Current implementation is very inefficient (theoretical
complexity is \(O(n^3)\), where \(n\) is the number
of bricks in the hierarchy). It can be sped up easily.

	Parameters

	path (Path or str) – The path for the desired selection. If a string is given
it is parsed into a path.

	Returns

	
	Depending on the path given, one of the following

	* Selector with desired bricks.

	* list of SharedTensorVariable.

Serialization

This module provides load() and dump() functions that can serve
as drop-in replacement for the respective functions from the standard
pickle [https://docs.python.org/3.4/library/pickle.html#module-pickle] module. The main differences between them and the standard
ones are:

	The dump is physically a tarball, in which the pickle is stored
as ‘_pkl’ file.

	A special file ‘_parameters’ in the tarball can contain the data
of a selected set of Theano shared variables. This data is
referenced from _pkl using persistent id mechanism, which means
that no duplication takes place. The goal here is to save the values
of the parameters (this is what these shared variables are in most
cases) in the most robust way possible. The actual format for
‘_parameters’ file is the one used by numpy.savez() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez.html#numpy.savez], i.e. a zip
file of numpy arrays.

	More objects can be dumped in the archive using the add_to_dump
function. If the object has the same parameters as the one already
dumped, then you can avoid to dump those parameters thank to the
persistent id mechanism.

	The dump() strives to catch situations when the user tries
to pickle a function or a class not defined in the global namespace
and give a meaningful warning.

If briefly, this module proposes a dumping mechanism which allows for
greater robustness and persistence than standard pickling.

Examples

Consider a standard main loop (without an algorithm and a data stream
for brevity)

>>> from theano import tensor
>>> from blocks.main_loop import MainLoop
>>> from blocks.bricks import MLP, Tanh, Softmax
>>> from blocks.model import Model
>>> mlp = MLP([Tanh(), None], [784, 10, 10])
>>> x = tensor.matrix('features')
>>> y = tensor.lmatrix('targets')
>>> cost = Softmax().categorical_cross_entropy(
... y.flatten(), mlp.apply(tensor.flatten(x, outdim=2)))
>>> main_loop = MainLoop(None, None, model=Model(cost))

Let’s see how the main loop is dumped by dump()

>>> from blocks.serialization import dump, load
>>> import tarfile
>>> with open('main_loop.tar', 'wb') as dst:
... dump(main_loop, dst)
>>> tarball = tarfile.open('main_loop.tar', 'r')
>>> tarball
<tarfile.TarFile object at ...>
>>> tarball.getnames()
['_pkl']
>>> tarball.close()

As promised, the dump is a tarball. Since we did not ask for any additional
magic, it just contains the pickled main loop in ‘_pkl’ file.

Let’s do something more interesting:

>>> with open('main_loop.tar', 'wb') as dst:
... dump(main_loop, dst,
... parameters=main_loop.model.parameters)
>>> tarball = tarfile.open('main_loop.tar', 'r')
>>> tarball.getnames()
['_parameters', '_pkl']

As requested by specifying the _parameters argument, the parameters were
saved in a zip file.

>>> import numpy
>>> ps = numpy.load(tarball.extractfile(tarball.getmember('_parameters')))
>>> sorted(ps.keys())
['|mlp|linear_0.W', '|mlp|linear_0.b', '|mlp|linear_1.W', '|mlp|lin...]
>>> ps.close()

The names for parameters are chosen intelligently to reflect their
position in the brick hierarchy, if they belong to bricks, and by
simply using the .name attribute, if they do not.

The loading of the main loop as a whole still works:

>>> with open('main_loop.tar', 'rb') as src:
... main_loop_loaded = load(src)
>>> main_loop_loaded
<blocks.main_loop.MainLoop object at ...>

Additionally, this module provides convenience routine
load_parameters():

>>> with open('main_loop.tar', 'rb') as src:
... parameters = load_parameters(src)
>>> sorted(parameters.keys())
['/mlp/linear_0.W', '/mlp/linear_0.b', '/mlp/linear_1.W', '/mlp/line...]

Loading parameters saved by dump() with load_parameters()
ensures that their hierarchical names are compatible with
Model and Selector classes.

TODO: Add information about add_to_dump().

	
blocks.serialization.add_to_dump(object_, file_, name, parameters=None, use_cpickle=False, protocol=2, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/serialization.py#L302]

	Pickles an object to an existing tar archive.

This function allows to dump more objects to an existing archive. If
the object you want to dump posesses the same set of shared variables
as the object already dumped, you can pass them to the parameters
argument, which will avoid them to be serialized a second time.
However, it won’t work if the shared variable you pass to the
parameters argument are not already in the archive.

	Parameters

	
	object (object [https://docs.python.org/3.4/library/functions.html#object]) – The object to pickle.

	file (file) – The destination for saving, opened in read-write mode (r+).

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the object you are dumping. It will be used as a file
name in the archive. ‘_pkl’ and ‘_paramters’ are reserved names
and can’t be used.

	parameters (list [https://docs.python.org/3.4/library/stdtypes.html#list], optional) – Shared variables whose internal numpy arrays should be saved
separately in the _parameters field of the tar file. Must be a
subset of the parameters already in the archive.

	use_cpickle (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Use cPickle instead of pickle. Setting it to true will disable the
warning message if you try to pickle objects from the main module!
Be sure that you don’t have the warning before turning this flag
on. Default: False.

	protocol (int [https://docs.python.org/3.4/library/functions.html#int], optional) – The pickling protocol to use. Unlike Python’s built-in pickle, the
default is set to 2 instead of 0 for Python 2. The Python 3
default (level 3) is maintained.

	**kwargs – Keyword arguments to be passed to pickle.Pickler.

	
blocks.serialization.continue_training(path)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/serialization.py#L379]

	Continues training using checkpoint.

	Parameters

	path (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Path to checkpoint.

Notes

Python picklers can unpickle objects from global namespace only if
they are present in namespace where unpickling happens. Often global
functions are needed for mapping, filtering and other data stream
operations. In a case if the main loop uses global objects and
this function fails with a message like
`
AttributeError: 'module' object has no attribute '...'
`
it means that you need to import these objects.

Examples

This function can be used in two ways: in your script where a main
loop defined or in a different script. For later options see Notes
section.

	
blocks.serialization.dump(object_, file_, parameters=None, use_cpickle=False, protocol=2, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/serialization.py#L153]

	Pickles an object, optionally saving its parameters separately.

	Parameters

	
	object (object [https://docs.python.org/3.4/library/functions.html#object]) – The object to pickle. If None, only the parameters passed to the
parameters argument will be saved.

	file (file) – The destination for saving.

	parameters (list [https://docs.python.org/3.4/library/stdtypes.html#list], optional) – Shared variables whose internal numpy arrays should be saved
separately in the _parameters field of the tar file.

	pickle_object (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If False, object_ will not be serialized, only its parameters.
This flag can be used when object_ is not serializable, but one
still want to save its parameters. Default: True

	use_cpickle (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Use cPickle instead of pickle. Setting it to true will disable the
warning message if you try to pickle objects from the main module,
so be sure that there is no warning before turning this flag
on. Default: False.

	protocol (int [https://docs.python.org/3.4/library/functions.html#int], optional) – The pickling protocol to use. Unlike Python’s built-in pickle, the
default is set to 2 instead of 0 for Python 2. The Python 3
default (level 3) is maintained.

	**kwargs – Keyword arguments to be passed to pickle.Pickler.

	
blocks.serialization.dump_and_add_to_dump(object_, file_, parameters=None, to_add=None, use_cpickle=False, protocol=2, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/serialization.py#L412]

	Calls both dump and add_to_dump to serialze several objects.

This function is used to serialize several at the same time, using
persistent ID. Its main advantage is that it can be used with
secure_dump.

	Parameters

	
	object (object [https://docs.python.org/3.4/library/functions.html#object]) – The object to pickle. If None, only the parameters passed to the
parameters argument will be saved.

	file (file) – The destination for saving.

	parameters (list [https://docs.python.org/3.4/library/stdtypes.html#list], optional) – Shared variables whose internal numpy arrays should be saved
separately in the _parameters field of the tar file.

	to_add (dict of objects) – A {‘name’: object} dictionnary of additional objects to save in
the tar archive. Its keys will be used as name in the tar file.

	use_cpickle (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Use cPickle instead of pickle. Setting it to true will disable the
warning message if you try to pickle objects from the main module,
so be sure that there is no warning before turning this flag
on. Default: False.

	protocol (int [https://docs.python.org/3.4/library/functions.html#int], optional) – The pickling protocol to use. Unlike Python’s built-in pickle, the
default is set to 2 instead of 0 for Python 2. The Python 3
default (level 3) is maintained.

	**kwargs – Keyword arguments to be passed to pickle.Pickler.

	
blocks.serialization.load(file_, name='_pkl', use_cpickle=False, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/serialization.py#L238]

	Loads an object saved using the dump function.

By default, this function loads the object saved by the dump
function. If some objects have been added to the archive using the
add_to_dump function, then you can load them by passing their name
to the name parameter.

	Parameters

	
	file (file) – The file that contains the object to load.

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Name of the object to load. Default is _pkl, meaning that it is
the original object which have been dumped that is loaded.

	use_cpickle (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Use cPickle instead of pickle. Default: False.

	**kwargs – Keyword arguments to be passed to pickle.Unpickler.
Used for e.g. specifying the encoding so as to load legacy Python
pickles under Python 3.x.

	Returns

	

	Return type

	The object saved in file_.

	
blocks.serialization.load_parameters(file_)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/serialization.py#L280]

	Loads the parameter values saved by dump().

This functions loads the parameters that have been saved separately by
dump(), ie the ones given to its parameter parameters.

	Parameters

	file (file) – The source to load the parameters from.

	Returns

	

	Return type

	A dictionary of (parameter name, numpy array) pairs.

	
blocks.serialization.secure_dump(object_, path, dump_function=<function dump>, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/serialization.py#L207]

	Robust serialization - does not corrupt your files when failed.

	Parameters

	
	object (object [https://docs.python.org/3.4/library/functions.html#object]) – The object to be saved to the disk.

	path (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The destination for saving.

	dump_function (function) – The function that is used to perform the serialization. Must take
an object and file object as arguments. By default, dump() is
used. An alternative would be pickle.dump() [https://docs.python.org/3.4/library/pickle.html#pickle.dump].

	**kwargs – Keyword arguments to be passed to dump_function.

Theano expressions

	
blocks.theano_expressions.hessian_times_vector(gradient, parameter, vector, r_op=False)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/theano_expressions.py#L24]

	Return an expression for the Hessian times a vector.

	Parameters

	
	gradient (TensorVariable) – The gradient of a cost with respect to parameter

	parameter (TensorVariable) – The parameter with respect to which to take the gradient

	vector (TensorVariable) – The vector with which to multiply the Hessian

	r_op (bool [https://docs.python.org/3.4/library/functions.html#bool], optional) – Whether to use Rop() or not. Defaults to
False. Which solution is fastest normally needs to be
determined by profiling.

	
blocks.theano_expressions.l2_norm(tensors, squared=False)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/theano_expressions.py#L5]

	Computes the total L2 norm of a set of tensors.

Converts all operands to TensorVariable
(see as_tensor_variable()).

	Parameters

	
	tensors (iterable of TensorVariable (or compatible)) – The tensors.

	squared (bool [https://docs.python.org/3.4/library/functions.html#bool], optional) – If True, return the squared L2 norm. Default: False.

Common Utilities

	
blocks.utils.utils.change_recursion_limit(*args, **kwds)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/../../../../../../../../../usr/lib/python2.7/contextlib.py#L82]

	Temporarily changes the recursion limit.

	
blocks.utils.utils.dict_subset(dict_, keys, pop=False, must_have=True)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/utils.py#L135]

	Return a subset of a dictionary corresponding to a set of keys.

	Parameters

	
	dict (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – The dictionary.

	keys (iterable) – The keys of interest.

	pop (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, the pairs corresponding to the keys of interest are
popped from the dictionary.

	must_have (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, a ValueError will be raised when trying to retrieve a
key not present in the dictionary.

	Returns

	result – An ordered dictionary of retrieved pairs. The order is the same as
in the keys argument.

	Return type

	OrderedDict

	
blocks.utils.utils.dict_union(*dicts, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/utils.py#L173]

	Return union of a sequence of disjoint dictionaries.

	Parameters

	
	dicts (dicts) – A set of dictionaries with no keys in common. If the first
dictionary in the sequence is an instance of OrderedDict, the
result will be OrderedDict.

	**kwargs – Keywords and values to add to the resulting dictionary.

	Raises

	ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] – If a key appears twice in the dictionaries or keyword arguments.

	
blocks.utils.utils.extract_args(expected, *args, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/utils.py#L277]

	Route keyword and positional arguments to a list of names.

A frequent situation is that a method of the class gets to
know its positional arguments only when an instance of the class
has been created. In such cases the signature of such method has to
be *args, **kwargs. The downside of such signatures is that the
validity of a call is not checked.

Use extract_args() if your method knows at runtime, but not
at evaluation/compile time, what arguments it actually expects,
in order to check that they are correctly received.

	Parameters

	
	expected (list of str) – A list of strings denoting names for the expected arguments,
in order.

	args (iterable) – Positional arguments that have been passed.

	kwargs (Mapping) – Keyword arguments that have been passed.

	Returns

	routed_args – An OrderedDict mapping the names in expected to values drawn
from either args or kwargs in the usual Python fashion.

	Return type

	OrderedDict

	Raises

	
	KeyError [https://docs.python.org/3.4/library/exceptions.html#KeyError] – If a keyword argument is passed, the key for which is not
contained within expected.

	TypeError [https://docs.python.org/3.4/library/exceptions.html#TypeError] – If an expected argument is accounted for in both the positional
and keyword arguments.

	ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] – If certain arguments in expected are not assigned a value
by either a positional or keyword argument.

	
blocks.utils.utils.find_bricks(top_bricks, predicate)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/utils.py#L337]

	Walk the brick hierarchy, return bricks that satisfy a predicate.

	Parameters

	
	top_bricks (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – A list of root bricks to search downward from.

	predicate (callable) – A callable that returns True for bricks that meet the
desired criteria or False for those that don’t.

	Returns

	found – A list of all bricks that are descendants of any element of
top_bricks that satisfy predicate.

	Return type

	list [https://docs.python.org/3.4/library/stdtypes.html#list]

	
blocks.utils.utils.ipdb_breakpoint(x)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/utils.py#L242]

	A simple hook function for put_hook() that runs ipdb.

	Parameters

	x (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The value of the hooked variable.

	
blocks.utils.utils.pack(arg)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/utils.py#L11]

	Pack variables into a list.

	Parameters

	arg (object [https://docs.python.org/3.4/library/functions.html#object]) – Either a list or tuple, or any other Python object. Lists will be
returned as is, and tuples will be cast to lists. Any other
variable will be returned in a singleton list.

	Returns

	List containing the arguments

	Return type

	list [https://docs.python.org/3.4/library/stdtypes.html#list]

	
blocks.utils.utils.print_shape(x, header=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/utils.py#L261]

	

	
blocks.utils.utils.print_sum(x, header=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/utils.py#L255]

	

	
blocks.utils.utils.repr_attrs(instance, *attrs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/utils.py#L206]

	Prints a representation of an object with certain attributes.

	Parameters

	
	instance (object [https://docs.python.org/3.4/library/functions.html#object]) – The object of which to print the string representation

	*attrs – Names of attributes that should be printed.

Examples

>>> class A(object):
... def __init__(self, value):
... self.value = value
>>> a = A('a_value')
>>> repr(a)
<blocks.utils.A object at 0x7fb2b4741a10>
>>> repr_attrs(a, 'value')
<blocks.utils.A object at 0x7fb2b4741a10: value=a_value>

	
blocks.utils.utils.reraise_as(new_exc)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/utils.py#L33]

	Reraise an exception as a different type or with a message.

This function ensures that the original traceback is kept, making for
easier debugging.

	Parameters

	new_exc (Exception [https://docs.python.org/3.4/library/exceptions.html#Exception] or str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The new error to be raised e.g. (ValueError(“New message”))
or a string that will be prepended to the original exception
message

Notes

Note that when reraising exceptions, the arguments of the original
exception are cast to strings and appended to the error message. If
you want to retain the original exception arguments, please use:

>>> try:
... 1 / 0
... except Exception as e:
... reraise_as(Exception("Extra information", *e.args))
Traceback (most recent call last):
 ...
Exception: 'Extra information, ...

Examples

>>> class NewException(Exception):
... def __init__(self, message):
... super(NewException, self).__init__(message)
>>> try:
... do_something_crazy()
... except Exception:
... reraise_as(NewException("Informative message"))
Traceback (most recent call last):
 ...
NewException: Informative message ...

	
blocks.utils.utils.unpack(arg, singleton=False)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/utils.py#L100]

	Unpack variables from a list or tuple.

	Parameters

	
	arg (object [https://docs.python.org/3.4/library/functions.html#object]) – Either a list or tuple, or any other Python object. If passed a
list or tuple of length one, the only element of that list will
be returned. If passed a tuple of length greater than one, it
will be cast to a list before returning. Any other variable
will be returned as is.

	singleton (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, arg is expected to be a singleton (a list or tuple
with exactly one element) and an exception is raised if this is not
the case. False by default.

	Returns

	A list of length greater than one, or any other Python object
except tuple.

	Return type

	object [https://docs.python.org/3.4/library/functions.html#object]

Theano Utilities

	
blocks.utils.theano_utils.check_theano_variable(variable, n_dim, dtype_prefix)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/theano_utils.py#L131]

	Check number of dimensions and dtype of a Theano variable.

If the input is not a Theano variable, it is converted to one. None
input is handled as a special case: no checks are done.

	Parameters

	
	variable (TensorVariable or convertible to one) – A variable to check.

	n_dim (int [https://docs.python.org/3.4/library/functions.html#int]) – Expected number of dimensions or None. If None, no check is
performed.

	dtype_prefix (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Expected dtype prefix or None. If None, no check is performed.

	
blocks.utils.theano_utils.is_graph_input(variable)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/theano_utils.py#L165]

	Check if variable is a user-provided graph input.

To be considered an input the variable must have no owner, and not
be a constant or shared variable.

	Parameters

	variable (TensorVariable) –

	Returns

	True If the variable is a user-provided input to the graph.

	Return type

	bool [https://docs.python.org/3.4/library/functions.html#bool]

	
blocks.utils.theano_utils.is_shared_variable(variable)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/theano_utils.py#L186]

	Check if a variable is a Theano shared variable.

Notes

This function excludes shared variables that store the state of Theano
random number generators.

	
blocks.utils.theano_utils.put_hook(variable, hook_fn, *args)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/theano_utils.py#L200]

	Put a hook on a Theano variables.

Ensures that the hook function is executed every time when the value
of the Theano variable is available.

	Parameters

	
	variable (TensorVariable) – The variable to put a hook on.

	hook_fn (function) – The hook function. Should take a single argument: the variable’s
value.

	*args (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – Positional arguments to pass to the hook function.

	
blocks.utils.theano_utils.shared_floatx(value, name=None, borrow=False, dtype=None, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/theano_utils.py#L78]

	Transform a value into a shared variable of type floatX.

	Parameters

	
	value (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The value to associate with the Theano shared.

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str], optional) – The name for the shared variable. Defaults to None.

	borrow (bool [https://docs.python.org/3.4/library/functions.html#bool], optional) – If set to True, the given value will not be copied if possible.
This can save memory and speed. Defaults to False.

	dtype (str [https://docs.python.org/3.4/library/stdtypes.html#str], optional) – The dtype of the shared variable. Default value is
config.floatX [https://theano.readthedocs.io/en/latest/library/config.html#config.floatX].

	**kwargs – Keyword arguments to pass to the shared() [https://theano.readthedocs.io/en/latest/library/index.html#theano.shared] function.

	Returns

	A Theano shared variable with the requested value and dtype.

	Return type

	tensor.TensorSharedVariable

	
blocks.utils.theano_utils.shared_floatx_nans(shape, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/theano_utils.py#L59]

	Creates a shared variable array filled with nans.

	Parameters

	
	shape (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – A tuple of integers representing the shape of the array.

	**kwargs – Keyword arguments to pass to the shared_floatx() function.

	Returns

	A Theano shared variable filled with nans.

	Return type

	class:’tensor.TensorSharedVariable’

	
blocks.utils.theano_utils.shared_floatx_zeros(shape, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/theano_utils.py#L40]

	Creates a shared variable array filled with zeros.

	Parameters

	
	shape (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – A tuple of integers representing the shape of the array.

	**kwargs – Keyword arguments to pass to the shared_floatx() function.

	Returns

	A Theano shared variable filled with zeros.

	Return type

	class:’tensor.TensorSharedVariable’

	
blocks.utils.theano_utils.shared_floatx_zeros_matching(shared_variable, name=None, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/theano_utils.py#L10]

	Create another shared variable with matching shape and broadcast.

	Parameters

	
	shared_variable (:class:'tensor.TensorSharedVariable') – A Theano shared variable with the desired shape and broadcastable
flags.

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str], optional) – The name for the shared variable. Defaults to None.

	**kwargs – Keyword arguments to pass to the shared_floatx_zeros()
function.

	Returns

	A new shared variable, initialized to all zeros, with the same
shape and broadcastable flags as shared_variable.

	Return type

	class:’tensor.TensorSharedVariable’

	
blocks.utils.theano_utils.shared_like(variable, name=None, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/theano_utils.py#L108]

	Construct a shared variable to hold the value of a tensor variable.

	Parameters

	
	variable (TensorVariable) – The variable whose dtype and ndim will be used to construct
the new shared variable.

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str] or None [https://docs.python.org/3.4/library/constants.html#None]) – The name of the shared variable. If None, the name is determined
based on variable’s name.

	**kwargs – Keyword arguments to pass to the shared() [https://theano.readthedocs.io/en/latest/library/index.html#theano.shared] function.

Development

We want to encourage everyone to contribute to the development of Blocks
and Fuel. To ensure the codebase is of high quality, we ask all new
developers to have a quick read through these rules to make sure that
any code you contribute will be easy to merge!

[image: ../_images/code_quality.png]

Formatting guidelines

Blocks follows the PEP8 style guide [https://www.python.org/dev/peps/pep-0008/] closely, so please make sure you are
familiar with it. Our Travis CI buildbots (for Blocks [https://travis-ci.org/mila-udem/blocks],
Fuel [https://travis-ci.org/mila-udem/fuel], and Blocks-extras [https://travis-ci.org/mila-udem/blocks-extras])
run flake8 [https://pypi.python.org/pypi/flake8] as part of every build,
which checks for PEP8 compliance (using the pep8 [https://pypi.python.org/pypi/pep8] tool) and for some common
coding errors using pyflakes [https://pypi.python.org/pypi/pyflakes]. You might want to install and run flake8 [https://pypi.python.org/pypi/flake8] on your
code before submitting a PR to make sure that your build doesn’t fail because of
e.g. a bit of extra whitespace.

Note that passing flake8 [https://pypi.python.org/pypi/flake8] does not necessarily mean that your code is PEP8
compliant! Some guidelines which aren’t checked by flake8 [https://pypi.python.org/pypi/flake8]:

	Imports should be grouped [https://www.python.org/dev/peps/pep-0008/#imports] into standard library, third party, and local
imports with a blank line in between groups.

	Variable names should be explanatory and unambiguous.

There are also some style guideline decisions that were made specifically for
Blocks and Fuel:

	Do not rename imports i.e. do not use import theano.tensor as T or
import numpy as np.

	Direct imports, import ..., precede from ... import ... statements.

	Imports are otherwise listed alphabetically.

	Don’t recycle variable names (i.e. don’t use the same variable name to refer
to different things in a particular part of code), especially when they are
arguments to functions.

	Group trivial attribute assignments from arguments and keyword arguments
together, and separate them from remaining code with a blank line. Avoid the
use of implicit methods such as self.__dict__.update(locals()).

class Foo(object):
 def __init__(self, foo, bar, baz=None, **kwargs):
 super(Foo, self).__init__(**kwargs)
 if baz is None:
 baz = []

 self.foo = foo
 self.bar = bar
 self.baz = baz

Code guidelines

Some guidelines to keep in mind when coding for Blocks or Fuel. Some of
these are simply preferences, others stem from particular requirements
we have, e.g., in order to serialize training progress, support Python 2
and 3 simultaneously, etc.

Validating function arguments

In general, be Pythonic and rely on duck typing [https://en.wikipedia.org/wiki/Duck_typing].

When I see a bird that walks like a duck and swims like a duck and quacks
like a duck, I call that bird a duck.

—James Whitcomb Riley

That is, avoid trivial checks such as

isinstance(var, numbers.Integral)
isinstance(var, (tuple, list))

in cases where any number (like a float without a fractional part or a NumPy
scalar) or iterable (like a dictionary view, custom iterator) would work too.

If you need to perform some sort of input validation, don’t use assert
statements. Raise a ValueError instead. assert statements should
only be used for sanity tests [https://en.wikipedia.org/wiki/Assertion_%28software_development%29#Comparison_with_error_handling] i.e. they should never be triggered, unless
there is a bug in the code.

Abstract classes

If a class is an abstract base class [https://en.wikipedia.org/wiki/Class_%28computer_programming%29#Abstract_and_concrete], use Python’s abc [https://docs.python.org/3/library/abc.html] to mark it as such.

from abc import ABCMeta
from six import add_metaclass
@add_metaclass(ABCMeta)
class Abstract(object):
 pass

Our documentation generator (Sphinx [http://sphinx-doc.org/] with the autodoc [http://sphinx-doc.org/ext/autodoc.html] extension, running on
Read the Docs [https://readthedocs.org/]) doesn’t recognize classes which inherit the ABCMeta
metaclass as abstract and will try to instantiate them, causing errors when
building documentation. To prevent this, make sure to always use the
add_metaclass decorator, regardless of the parent.

Python 2 and 3

Blocks and Fuel aim to be both Python 2 and Python 3 compliant using a
single code-base, without using 2to3 [https://docs.python.org/2/library/2to3.html]. There are many online resources
which discuss the writing of compatible code. For a quick overview see
the cheatsheet from Python Charmers [http://python-future.org/compatible_idioms.html]. For non-trivial cases, we use
the six [https://pythonhosted.org/six/] compatibility library.

Documentation should be written to be Python 3 compliant.

Reraising exceptions

When catching exceptions, use the reraise_as() function to
reraise the exception (optionally with a new message or as a different type).
Not doing so clobbers the original traceback [http://www.ianbicking.org/blog/2007/09/re-raising-exceptions.html], making it impossible to use
pdb to debug the problems.

Serialization

To ensure the reproducibility of scientific experiments, Blocks and Fuel
try to make sure that stopping and resuming training doesn’t affect
the final results. In order to do so it takes a radical approach,
serializing the entire training state using pickle [https://docs.python.org/3/library/pickle.html]. Some things cannot
be pickled, so their use should be avoided when the object will be
pickled as part of the main loop:

	Lambda functions

	Iterators and generators (use picklable_itertools [https://github.com/dwf/picklable_itertools])

	References to methods as attributes

	Any variable that lies outside of the global namespace, e.g.,
nested functions

	Dynamically generated classes (possible [https://stackoverflow.com/questions/4647566/pickle-a-dynamically-parameterized-sub-class] but complicated)

Mutable types as keyword argument defaults

A common source of mysterious bugs is the use of mutable types as defaults for
keyword arguments.

class Foo(object):
 def __init__(self, bar=[]):
 bar.append('baz')
 self.bar = bar

Initializing two instances of this class results in two objects sharing the same
attribute bar with the value ['baz', 'baz'], which is often not what was
intended. Instead, use:

class Foo(object):
 def __init__(self, bar=None):
 if bar is None:
 bar = []
 bar.append('baz')
 self.bar = bar

Writing error messages

Comprehensive error messages can be a great way to inform users of what could
have gone wrong. However, lengthy error messages can clutter code, and
implicitly concatenated strings over multiple lines are frustrating to edit. To
prevent this, use a separate triple-quoted string with escaped newlines to
store the detailed explanation of your error. Keep a terse error message
directly in the code though, so that someone reading the code still knows what
the error is being raised for.

informative_error = """

You probably passed the wrong keyword argument, which caused this error. \
Please pass `b` instead of `{value}`, and have a look at the documentation \
of the `is_b` method for details."""

def is_b(value):
 """Raises an error if the value is not 'b'."""
 if value != 'b':
 raise ValueError("wrong value" + informative_error.format(value))
 return value

Unit testing

Blocks and Fuel use unit testing to ensure that individual parts of
the library behave as intended. It’s also essential in ensuring that
parts of the library are not broken by proposed changes. Since Blocks
and Fuel were designed to be used together, it is important to make sure
changes in Fuel do not break Blocks.

All new code should be accompanied by extensive unit tests. Whenever a pull
request is made, the full test suite is run on Travis CI [https://travis-ci.org/mila-udem/blocks], and pull requests
are not merged until all tests pass. Coverage analysis is performed using
coveralls [https://coveralls.io/r/mila-udem/blocks]. Please make sure that at the very least your unit tests cover the
core parts of your committed code. In the ideal case, all of your code should be
unit tested.

If you are fixing a bug, please be sure to add a unit test to make sure that the
bug does not get re-introduced later on.

The test suite can be executed locally using nose2 [https://readthedocs.org/projects/nose2/] 1.

	1

	For all tests but the doctests, nose [http://nose.readthedocs.org/en/latest/] can also be used.

Writing and building documentation

The documentation guidelines outline how to write documentation
for Blocks and Fuel, and how to build a local copy of the documentation for
testing purposes.

Internal API

The development API reference contains documentation on
the internal classes that Blocks uses. If you are not planning on contributing
to Blocks, have a look at the user API reference instead.

Installation

See the instructions at the bottom of the installation instructions.

Sending a pull request

See our pull request workflow for a refresher on the
general recipe for sending a pull request to Blocks or Fuel.

Making a new release

Create an initial pull request and copy the following piece of markdown code.
This pull request should only change the version number. Then, create a pull
request to Fuel which refers the first PR. Follow the instruction carefully
and check the boxes in process.

- **Stage 1**: Make changes in `master`:
 - [] Freeze other PRs.

 After we agreed to initiate the process of releasing a new version,
 other PRs shouldn't be merged.
 - [] Increase the version number counter of Blocks.

 Change the version number in `blocks/__init__.py`.
 - [] Increase the version number counter of Fuel.

 Change the version number in `fuel/version.py`.
- **Stage 2**: After two PRs merged to Blocks and Fuel:
 - [] Create a pull request to merge `master` into `stable`.

 Add a link to the initial PR in order not to get lost in the numerous
 pull requests.
 - [] Create a pull request to Fuel.

 This will be a corresponding PR to Fuel which merges its `master` into
 `stable`. Add a link to the initial PR.
 - [] Check the Travis CI build log *on both the pull requests merging
 `master` into `stable`*.

 Read carefully the Travis CI messages, check that it tests the
 right version.
 - [] Check the Theano version.

 The `req*.txt` should refer the last development Theano version
 which is known not to have bugs.
 - [] Check the Fuel version in `req*.txt` files.

 We should reference the stable version of Fuel. It can be seen
 in the Travis CI output.
 - [] Merge Fuel pull request.
 - [] Merge this pull request.
- **Stage 3**: After the PRs are merged:
 - [] Wait the build to pass.
 - [] Check documentation build at ReadTheDocs.
 - [] Double check that the version corresponds `__version__`.
 - [] Create a release of Fuel by going to the
 [releases page](https://github.com/mila-udem/fuel/releases) and
 clicking "Draft new release".
 - [] Create a release of Blocks by going to the
 [releases page](https://github.com/mila-udem/blocks/releases) and
 clicking "Draft new release".

Internal API

	Bricks

	Extensions

	Utils

Bricks

	
class blocks.bricks.base.Application(application_function)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L68]

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

An application method belonging to a particular type of brick.

The application methods of each Brick class are automatically
replaced by an instance of Application. This allows us to
store metadata about particular application methods (such as their in-
and outputs) easily.

	
application

	callable – The original (unbounded) application function defined on the
Brick.

	
delegate_function

	callable – A function that takes a Brick instance as an argument and
returns a BoundApplication object to which attribute
requests should be routed.

	
properties

	dict [https://docs.python.org/3.4/library/stdtypes.html#dict] (str [https://docs.python.org/3.4/library/stdtypes.html#str], callable [https://docs.python.org/3.4/library/functions.html#callable]) – A dictionary of property getters that should be called when an
attribute with the given name is requested.

	
instances

	dict [https://docs.python.org/3.4/library/stdtypes.html#dict] (Brick, BoundApplication) – A record of bound application instances created by the descriptor
protocol.

	
call_stack

	list [https://docs.python.org/3.4/library/stdtypes.html#list] of Brick – The call stack of brick application methods. Used to check whether
the current call was made by a parent brick.

	
brick

	type – The brick class to which this instance belongs.

	Raises

	
	ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] – If a brick’s application method is applied by another brick which
does not list the former as a child.

	ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] – If the application method’s inputs and/or outputs don’t match with
the function signature or the values returned (respectively).

Notes

When a Brick is instantiated and its application method (i.e.
an instance of this class) requested, the descriptor protocol (through
the __get__() method) automatically instantiates a
BoundApplication class and returns this. This bound
application class can be used to store application information
particular to a brick instance. Any attributes unknown to the bounded
application are automatically routed to the application that
instantiated it.

	
application_function

	

	
apply(bound_application, *args, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L248]

	

	
call_stack = []

	

	
delegate(f)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L164]

	Decorator to assign a delegate application.

An application method can assign a delegate application. Whenever
an attribute is not available, it will be requested from the
delegate instead.

Examples

>>> class Foo(Brick):
... @application(outputs=['baz'])
... def apply(self, x):
... return x + 1
...
... @apply.property('inputs')
... def apply_inputs(self):
... return ['foo', 'bar']
>>> class Bar(Brick):
... def __init__(self, foo):
... self.foo = foo
...
... @application(outputs=['foo'])
... def apply(self, x):
... return x + 1
...
... @apply.delegate
... def apply_delegate(self):
... return self.foo.apply
>>> foo = Foo()
>>> bar = Bar(foo)
>>> bar.apply.outputs
['foo']
>>> bar.apply.inputs
['foo', 'bar']

	
inputs

	

	
name

	

	
property(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L133]

	Decorator to make application properties.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name the property should take.

Examples

>>> class Foo(Brick):
... @application
... def apply(self, x):
... return x + 1
...
... @apply.property('inputs')
... def apply_inputs(self):
... return ['foo', 'bar']
>>> foo = Foo()
>>> foo.apply.inputs
['foo', 'bar']

	
class blocks.bricks.base.ApplicationCall(application)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L867]

	Bases: blocks.graph.annotations.Annotation

A link between the variable tags and bricks.

The application call can be used to attach to an apply call auxiliary
variables (e.g. monitors or regularizers) that do not form part of the
main computation graph.

The application call object is created before the call to the
application method and can be accessed by specifying an
application_call argument.

Also see Annotation.

	Parameters

	application (BoundApplication instance) – The bound application (i.e. belong to a brick instance) object
being called

Examples

>>> class Foo(Brick):
... @application
... def apply(self, x, application_call):
... application_call.add_auxiliary_variable(x.mean())
... return x + 1
>>> x = tensor.vector()
>>> y = Foo().apply(x)
>>> from blocks.filter import get_application_call
>>> get_application_call(y)
<blocks.bricks.base.ApplicationCall object at ...>

	
add_auxiliary_variable(variable, roles=None, name=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L905]

	Attach an auxiliary variable to the graph.

Auxiliary variables are Theano variables that are not part of a
brick’s output, but can be useful nonetheless e.g. as a regularizer
or to monitor during training progress.

	Parameters

	
	variable (TensorVariable) – The variable you want to add.

	roles (list of VariableRole instances, optional) – The roles of this variable. The AUXILIARY
role will automatically be added. Other options are
COST, WEIGHT, etc.

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str], optional) – Name to give to the variable. If the variable already has a
name it will be overwritten.

Examples

>>> from blocks.bricks.base import application, Brick
>>> from blocks.roles import COST
>>> from blocks.utils import shared_floatx_nans
>>> class Foo(Brick):
... def _allocate(self):
... W = shared_floatx_nans((10, 10))
... self.add_auxiliary_variable(W.mean(), name='mean_W')
... @application
... def apply(self, x, application_call):
... application_call.add_auxiliary_variable(
... x - 1, name='x_minus_1')
... application_call.add_auxiliary_variable(
... x.mean(), roles=[COST], name='mean_x')
... return x + 1
>>> from theano import tensor
>>> x = tensor.vector()
>>> y = Foo().apply(x)
>>> from blocks.graph import ComputationGraph
>>> cg = ComputationGraph([y])
>>> from blocks.filter import VariableFilter
>>> var_filter = VariableFilter(roles=[AUXILIARY])
>>> var_filter(cg.variables)
{x_minus_1, mean_W, mean_x}
>>> var_filter = VariableFilter(roles=[COST])
>>> var_filter(cg.variables)
{mean_x}

	
class blocks.bricks.base.BoundApplication(application, brick)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L334]

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

An application method bound to a Brick instance.

	
name

	

	
class blocks.bricks.base.Brick(name=None, children=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L409]

	Bases: blocks.graph.annotations.Annotation

A brick encapsulates Theano operations with parameters.

A brick goes through the following stages:

	Construction: The call to __init__() constructs a
Brick instance with a name and creates any child bricks as
well.

	Allocation of parameters:

	Allocation configuration of children: The
push_allocation_config() method configures any children of
this block.

	Allocation: The allocate() method allocates the shared
Theano variables required for the parameters. Also allocates
parameters for all children.

	The following can be done in either order:

	Application: By applying the brick to a set of Theano
variables a part of the computational graph of the final model is
constructed.

	The initialization of parameters:

	Initialization configuration of children: The
push_initialization_config() method configures any
children of this block.

	Initialization: This sets the initial values of the
parameters by a call to initialize(), which is needed
to call the final compiled Theano function. Also initializes
all children.

Not all stages need to be called explicitly. Step 3(a) will
automatically allocate the parameters if needed. Similarly, step
3(b.2) and 2(b) will automatically perform steps 3(b.1) and 2(a) if
needed. They only need to be called separately if greater control is
required. The only two methods which always need to be called are an
application method to construct the computational graph, and the
initialize() method in order to initialize the parameters.

At each different stage, a brick might need a certain set of
configuration settings. All of these settings can be passed to the
__init__() constructor. However, by default many bricks support
lazy initialization. This means that the configuration settings can
be set later.

Note

Some arguments to __init__() are always required, even when
lazy initialization is enabled. Other arguments must be given before
calling allocate(), while others yet only need to be given in
order to call initialize(). Always read the documentation of
each brick carefully.

Lazy initialization can be turned off by setting Brick.lazy =
False. In this case, there is no need to call initialize()
manually anymore, but all the configuration must be passed to the
__init__() method.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str], optional) – The name of this brick. This can be used to filter the application
of certain modifications by brick names. By default, the brick
receives the name of its class (lowercased).

	
name

	str – The name of this brick.

	
print_shapes

	bool – False by default. If True it logs the shapes of all the
input and output variables, which can be useful for debugging.

	
parameters

	list of TensorSharedVariable and None – After calling the allocate() method this attribute will be
populated with the shared variables storing this brick’s
parameters. Allows for None so that parameters can always be
accessed at the same index, even if some parameters are only
defined given a particular configuration.

	
children

	list of bricks – The children of this brick.

	
allocated

	bool – False if allocate() has not been called yet. True
otherwise.

	
initialized

	bool – False if allocate() has not been called yet. True
otherwise.

	
allocation_config_pushed

	bool – False if allocate() or push_allocation_config()
hasn’t been called yet. True otherwise.

	
initialization_config_pushed

	bool – False if initialize() or
push_initialization_config() hasn’t been called yet. True
otherwise.

Notes

To provide support for lazy initialization, apply the lazy()
decorator to the __init__() method.

Brick implementations must call the __init__() constructor of
their parent using super(BlockImplementation,
self).__init__(**kwargs) at the beginning of the overriding
__init__.

The methods _allocate() and _initialize() need to be
overridden if the brick needs to allocate shared variables and
initialize their values in order to function.

A brick can have any number of methods which apply the brick on Theano
variables. These methods should be decorated with the
application() decorator.

If a brick has children, they must be listed in the children
attribute. Moreover, if the brick wants to control the configuration of
its children, the _push_allocation_config() and
_push_initialization_config() methods need to be overridden.

Examples

Most bricks have lazy initialization enabled.

>>> import theano
>>> from blocks.initialization import IsotropicGaussian, Constant
>>> from blocks.bricks import Linear
>>> linear = Linear(input_dim=5, output_dim=3,
... weights_init=IsotropicGaussian(),
... biases_init=Constant(0))
>>> x = theano.tensor.vector()
>>> linear.apply(x) # Calls linear.allocate() automatically
linear_apply_output
>>> linear.initialize() # Initializes the weight matrix

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 34

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_allocate()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L621]

	Brick implementation of parameter initialization.

Implement this if your brick needs to allocate its parameters.

Warning

This method should never be called directly. Call
initialize() instead.

	
_initialize()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L660]

	Brick implementation of parameter initialization.

Implement this if your brick needs to initialize its parameters.

Warning

This method should never be called directly. Call
initialize() instead.

	
_push_allocation_config()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L691]

	Brick implementation of configuring child before allocation.

Implement this if your brick needs to set the configuration of its
children before allocation.

Warning

This method should never be called directly. Call
push_allocation_config() instead.

	
_push_initialization_config()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L723]

	Brick implementation of configuring child before initialization.

Implement this if your brick needs to set the configuration of its
children before initialization.

Warning

This method should never be called directly. Call
push_initialization_config() instead.

	
allocate()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L582]

	Allocate shared variables for parameters.

Based on the current configuration of this Brick create
Theano shared variables to store the parameters. After allocation,
parameters are accessible through the parameters attribute.

This method calls the allocate() method of all children
first, allowing the _allocate() method to override the
parameters of the children if needed.

	Raises

	ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] – If the configuration of this brick is insufficient to determine
the number of parameters or their dimensionality to be
initialized.

Notes

This method sets the parameters attribute to an empty list.
This is in order to ensure that calls to this method completely
reset the parameters.

	
children

	

	
get_dim(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L737]

	Get dimension of an input/output variable of a brick.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the variable.

	
get_dims(names)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L749]

	Get list of dimensions for a set of input/output variables.

	Parameters

	names (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – The variable names.

	Returns

	dims – The dimensions of the sources.

	Return type

	list [https://docs.python.org/3.4/library/stdtypes.html#list]

	
get_hierarchical_name(parameter, delimiter='/')[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L773]

	Return hierarhical name for a parameter.

Returns a path of the form brick1/brick2/brick3.parameter1. The
delimiter is configurable.

	Parameters

	delimiter (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The delimiter used to separate brick names in the path.

	
get_unique_path()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L765]

	Returns unique path to this brick in the application graph.

	
initialize()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L634]

	Initialize parameters.

Intialize parameters, such as weight matrices and biases.

Notes

If the brick has not allocated its parameters yet, this method will
call the allocate() method in order to do so.

	
parameters

	

	
print_shapes = False

	See Brick.print_shapes

	
push_allocation_config()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L673]

	Push the configuration for allocation to child bricks.

Bricks can configure their children, based on their own current
configuration. This will be automatically done by a call to
allocate(), but if you want to override the configuration of
child bricks manually, then you can call this function manually.

	
push_initialization_config()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L705]

	Push the configuration for initialization to child bricks.

Bricks can configure their children, based on their own current
configuration. This will be automatically done by a call to
initialize(), but if you want to override the configuration
of child bricks manually, then you can call this function manually.

	
class blocks.bricks.base.Children(brick, *args, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L52]

	Bases: blocks.utils.containers.AnnotatingList

Adds the brick to the list of parents of its children.

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 34

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_delitem(key)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L62]

	The operation to perform when an item is deleted.

	
_setitem(key, value)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L58]

	The operation to perform when an item is inserted/appended.

	
class blocks.bricks.base.LazyNone(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L798]

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

	
class blocks.bricks.base.Parameters(brick, *args, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L40]

	Bases: blocks.utils.containers.AnnotatingList

Adds the PARAMETER role to parameters automatically.

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 34

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_setitem(key, value)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L46]

	The operation to perform when an item is inserted/appended.

	
class blocks.bricks.base._Brick[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L378]

	Bases: abc.ABCMeta [https://docs.python.org/3.4/library/abc.html#abc.ABCMeta]

Metaclass which attaches brick instances to the applications.

In addition picklability of Application objects is ensured.
This means that Application objects can not be added to a
brick class after it is created. To allow adding application methods
programatically, the following hook is supported: the class namespace
is searched for decorators attribute, which can contain a
list of functions to be applied to the namespace of the class being
created. These functions can arbitratily modify this namespace.

	
blocks.bricks.base._variable_name(brick_name, application_name, name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L970]

	

	
blocks.bricks.base.application(*args, **kwargs)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L916]

	Decorator for methods that apply a brick to inputs.

	Parameters

	
	optional (**kwargs,) – The application method to wrap.

	optional – Attributes to attach to this application.

Notes

This decorator replaces application methods with Application
instances. It also sets the attributes given as keyword arguments to
the decorator.

Note that this decorator purposely does not wrap the original method
using e.g. wraps() [https://docs.python.org/3.4/library/functools.html#functools.wraps] or
update_wrapper() [https://docs.python.org/3.4/library/functools.html#functools.update_wrapper], since that would make the class
impossible to pickle (see notes at Application).

Examples

>>> class Foo(Brick):
... @application(inputs=['x'], outputs=['y'])
... def apply(self, x):
... return x + 1
... @application
... def other_apply(self, x):
... return x - 1
>>> foo = Foo()
>>> Foo.apply.inputs
['x']
>>> foo.apply.outputs
['y']
>>> Foo.other_apply
<blocks.bricks.base.Application object at ...>

	
blocks.bricks.base.args_to_kwargs(args, f)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L792]

	

	
blocks.bricks.base.copy_and_tag(variable, brick, call, role, application_name, name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L974]

	Helper method to copy a variable and annotate it.

	
blocks.bricks.base.create_unbound_method(func, cls)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L22]

	Create an unbounded method from a function and a class.

Notes

See https://bitbucket.org/gutworth/six/pull-request/64.

	
blocks.bricks.base.lazy(allocation=None, initialization=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L815]

	Makes the initialization lazy.

This decorator allows the user to define positional arguments which
will not be needed until the allocation or initialization stage of the
brick. If these arguments are not passed, it will automatically replace
them with a custom None object. It is assumed that the missing
arguments can be set after initialization by setting attributes with
the same name.

	Parameters

	
	allocation (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – A list of argument names that are needed for allocation.

	initialization (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – A list of argument names that are needed for initialization.

Examples

>>> class SomeBrick(Brick):
... @lazy(allocation=['a'], initialization=['b'])
... def __init__(self, a, b, c='c', d=None):
... print(a, b, c, d)
>>> brick = SomeBrick('a')
a NoneInitialization c None
>>> brick = SomeBrick(d='d', b='b')
NoneAllocation b c d

	
blocks.bricks.base.rename_function(function, new_name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/base.py#L369]

	

	
class blocks.bricks.Activation(name=None, children=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/interfaces.py#L41]

	Bases: blocks.bricks.base.Brick

Elementwise application of activation function.

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 34

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
class blocks.bricks.interfaces.ActivationDocumentation[source] [https://github.com/mila-udem/blocks/blob/master/blocks/bricks/interfaces.py#L10]

	Bases: blocks.bricks.base._Brick

Dynamically adds documentation to activations.

Notes

See http://bugs.python.org/issue12773.

Extensions

	
class blocks.extensions.predicates.OnLogRecord(record_name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/extensions/predicates.py]

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

Trigger a callback when a certain log record is found.

	Parameters

	record_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The record name to check.

	
class blocks.monitoring.evaluators.AggregationBuffer(variables, use_take_last=False)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/monitoring/evaluators.py#L95]

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

Intermediate results of aggregating values of Theano variables.

Encapsulates aggregators for a list of Theano variables. Collects
the respective updates and provides initialization and readout
routines.

	Parameters

	
	variables (list of TensorVariable) – The variable names are used as record names in the logs. Hence, all
the variable names must be unique.

	use_take_last (bool [https://docs.python.org/3.4/library/functions.html#bool]) – When True, the TakeLast aggregation scheme is used
instead of _DataIndependent for those variables that
do not require data to be computed.

	
initialization_updates

	list of tuples – Initialization updates of the aggregators.

	
accumulation_updates

	list of tuples – Accumulation updates of the aggregators.

	
readout_variables

	dict – A dictionary of record names to TensorVariable
representing the aggregated values.

	
inputs

	list of TensorVariable – The list of inputs needed for accumulation.

	
_compile()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/monitoring/evaluators.py#L166]

	Compiles Theano functions.

Todo

The current compilation method does not account for updates
attached to ComputationGraph elements. Compiling should
be out-sourced to ComputationGraph to deal with it.

	
_create_aggregators()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/monitoring/evaluators.py#L138]

	Create aggregators and collect updates.

	
get_aggregated_values()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/monitoring/evaluators.py#L198]

	Readout the aggregated values.

	
initialize_aggregators()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/monitoring/evaluators.py#L192]

	Initialize the aggregators.

	
class blocks.monitoring.evaluators.DatasetEvaluator(variables, updates=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/monitoring/evaluators.py#L207]

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

A DatasetEvaluator evaluates many Theano variables or other quantities.

The DatasetEvaluator provides a do-it-all method, evaluate(),
which computes values of variables on a dataset.

Alternatively, methods initialize_aggregators(),
process_batch(), get_aggregated_values() can be used with a
custom loop over data.

The values computed on subsets of the given dataset are aggregated
using the AggregationScheme`s provided in the
`aggregation_scheme tags. If no tag is given, the value is averaged
over minibatches. However, care is taken to ensure that variables
which do not depend on data are not unnecessarily recomputed.

	Parameters

	
	variables (list of TensorVariable and) – MonitoredQuantity
The variable names are used as record names in the logs. Hence, all
the names must be unique.

Each variable can be tagged with an AggregationScheme that
specifies how the value can be computed for a data set by
aggregating minibatches.

	updates (list of tuples or OrderedDict [https://docs.python.org/3.4/library/collections.html#collections.OrderedDict] or None) – TensorSharedVariable updates to be performed
during evaluation. This parameter is only for Theano variables.
Be careful not to update any model parameters as this is not
intended to alter your model in any meaningfullway. A typical
use case of this option arises when the theano function used
for evaluation contains a call to:function:~theano.scan which
might have returned shared variable updates.

	
_compile()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/monitoring/evaluators.py#L259]

	Compiles Theano functions.

Todo

The current compilation method does not account for updates
attached to ComputationGraph elements. Compiling should
be out-sourced to ComputationGraph to deal with it.

	
evaluate(data_stream)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/monitoring/evaluators.py#L319]

	Compute the variables over a data stream.

	Parameters

	data_stream (instance of DataStream) – The data stream. Only the first epoch of data is used.

	Returns

	
	A mapping from record names to the values computed on the provided

	dataset.

	
get_aggregated_values()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/monitoring/evaluators.py#L313]

	

	
initialize_aggregators()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/monitoring/evaluators.py#L295]

	

	
process_batch(batch)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/monitoring/evaluators.py#L299]

	

	
class blocks.monitoring.evaluators.MonitoredQuantityBuffer(quantities)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/monitoring/evaluators.py#L32]

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

Intermediate results of aggregating values of monitored-quantity.

Aggregate results for a list of monitored-quantity for every
single batch. Provides initialization and readout routines to
initialize each quantity and capture its aggregated results.

	Parameters

	quantities (list of MonitoredQuantity) – The quantity names are used as record names in the logs. Hence, all
the quantity names must be unique.

	
requires

	list of TensorVariable – Needed to calculate monitored-quantities.

	
quantity_names

	list of str – Names of quantities.

	
inputs

	list of TensorVariable – The list of inputs needed for variables in requires.

	
aggregate_quantities(numerical_values)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/monitoring/evaluators.py#L83]

	Aggregate the results for every batch.

	
get_aggregated_values()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/monitoring/evaluators.py#L74]

	Get the aggregated values.

	
initialize_quantities()[source] [https://github.com/mila-udem/blocks/blob/master/blocks/monitoring/evaluators.py#L68]

	Initialize the quantities.

	
blocks.monitoring.evaluators._validate_variable_names(variables)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/monitoring/evaluators.py#L17]

	Check for missing and duplicate variable names.

Utils

	
class blocks.utils.containers.AnnotatingList(items=None)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/containers.py#L8]

	Bases: _abcoll.MutableSequence

Mutable sequence performing operations on inserted/removed items.

	Parameters

	items (iterable, optional) – An iterable of items to initialize the sequence with.

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 34

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_delitem(key)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/containers.py#L40]

	The operation to perform when an item is deleted.

	
_setitem(key, value)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/containers.py#L36]

	The operation to perform when an item is inserted/appended.

	
insert(key, value)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/containers.py#L55]

	S.insert(index, object) – insert object before index

	
class blocks.utils.profile.Profile[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/profile.py#L8]

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

A profile of hierarchical timers.

Keeps track of timings performed with Timer. It also keeps
track of the way these timings were nested and makes use of this
information when reporting.

	
enter(name)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/profile.py#L21]

	

	
exit(t)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/profile.py#L26]

	

	
report(f=<open file '<stderr>', mode 'w'>)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/profile.py#L30]

	Print a report of timing information to standard output.

	Parameters

	f (object [https://docs.python.org/3.4/library/functions.html#object], optional) – An object with a write method that accepts string inputs.
Can be a file object, sys.stdout, etc. Defaults to
sys.stderr.

	
class blocks.utils.profile.Timer(name, profile)[source] [https://github.com/mila-udem/blocks/blob/master/blocks/utils/profile.py#L76]

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

A context manager to time the execution time of code within it.

This timer is attached to a Profile object that it reports
timings to. The Profile object accumulates the timings.
Timers can be nested, which the Profile will automatically
keep track of and use in its reporting.

	Parameters

	
	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of this section. Expected to adhere to variable naming
styles.

	profile (Profile) – The profile of the main loop. This is the object this context
manager will report the execution time to. The accumulation and
processing of timing information is handled by this object.

Notes

Timings are reported using timeit.default_timer() [https://docs.python.org/3.4/library/timeit.html#timeit.default_timer].

Building documentation

If you’ve made significant changes to the documentation, you can build a local
to see how your changes are rendered. You will need to install Sphinx [http://sphinx-doc.org/], the
Napoleon [http://sphinxcontrib-napoleon.readthedocs.org/en/latest/example_numpy.html] extension (to enable NumPy docstring support), and the Read the Docs
theme [https://github.com/snide/sphinx_rtd_theme]. You can do this by installing the optional docs requirements.

For Blocks:

$ pip install --upgrade git+git://github.com/user/blocks.git#egg=blocks[docs]

For Fuel:

$ pip install --upgrade git+git://github.com/user/fuel.git#egg=fuel[docs]

After the requirements have been installed, you can build a copy of the
documentation by running the following command from the root blocks
(or fuel) directory.

$ sphinx-build -b html docs docs/_build/html

Docstrings

Blocks and Fuel follow the NumPy docstring standards [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt]. For a quick
introduction, have a look at the NumPy [https://github.com/numpy/numpy/blob/master/doc/example.py] or Napoleon [http://sphinxcontrib-napoleon.readthedocs.org/en/latest/example_numpy.html] examples of
compliant docstrings. A few common mistakes to avoid:

	There is no line break after the opening quotes (""").

	There is an empty line before the closing quotes (""").

	The summary should not be more than one line.

The docstrings are formatted using reStructuredText [http://docutils.sourceforge.net/rst.html], and can make use of all
the formatting capabilities this provides. They are rendered into HTML
documentation using the Read the Docs [https://readthedocs.org/] service. After code has been merged,
please ensure that documentation was built successfully and that your docstrings
rendered as you intended by looking at the online documentation (for
Blocks [http://blocks.readthedocs.org/] or Fuel [http://fuel.readthedocs.org/],
which is automatically updated.

Writing doctests [https://docs.python.org/2/library/doctest.html] is encouraged, and they are run as part of the test suite.
They should use Python 3 syntax.

References and Intersphinx

Sphinx allows you to reference other objects [http://sphinx-doc.org/domains.html#python-roles] in the framework. This
automatically creates links to the API documentation of that object (if it
exists).

This is a link to :class:`SomeClass` in the same file. If you want to
reference an object in another file, you can use a leading dot to tell
Sphinx to look in all files e.g. :meth:`.SomeClass.a_method`.

Intersphinx is an extension that is enabled which allows to you to reference
the documentation of other projects such as Theano, NumPy and Scipy.

The input to a method can be of the type :class:`~numpy.ndarray`. Note that
in this case we need to give the full path. The tilde (~) tells Sphinx not
to render the full path (numpy.ndarray), but only the object itself
(ndarray).

Warning

Because of a bug in Napoleon [https://bitbucket.org/birkenfeld/sphinx-contrib/issue/82/napoleon-return-type-containing-colons-is] you can’t use the reference to a type in the
“Returns” section of your docstring without giving it a name. This doesn’t
render correctly:

Returns

:class:`Brick`
 The returned Brick.

But this does:

Returns

retured_brick : :class:`Brick`
 The returned Brick.

Pull request workflow

Blocks development takes place on GitHub [http://github.com/]; developers (including project
leads!) add new features by sending pull requests [https://help.github.com/articles/using-pull-requests/] from their personal
fork (we operate on the so-called fork & pull [https://help.github.com/articles/using-pull-requests/#fork--pull] model).

This page serves as a “quick reference” for the recommended pull request
workflow. It assumes you are working on a UNIX-like environment with Git
already installed. It is not intended to be an exhaustive tutorial
on Git; there are many of those available.

Before you begin

Create a GitHub account

If you don’t already have one, you should
create yourself a GitHub account [https://github.com/join].

Fork the Blocks repository

Once you’ve set up your account and logged in, you should fork the Blocks
repository to your account by clicking the “Fork” button on the
official repository’s web page [https://github.com/mila-udem/blocks].
More information on forking is available in the GitHub documentation [https://help.github.com/articles/fork-a-repo/].

Clone from your fork

In the side bar of your newly created fork of the Blocks repository, you should
see a field that says HTTPS clone URL above it. Copy that to your clipboard
and run, at the terminal,

$ git clone CLONE_URL

where CLONE_URL is the URL you copied from your GitHub fork.

If you’re doing a lot of development with GitHub you should look into
setting up SSH key authentication [https://help.github.com/categories/ssh/].

Add the official Blocks repository as a remote

In order to keep up with changes to the official Blocks repository, notify
Git of its existence and location by running

$ git remote add upstream https://github.com/mila-udem/blocks.git

You only need to do this once.

Beginning a pull request

Verify that origin points to your fork

Running the command

$ git remote -v | grep origin

should display two lines. The URLs therein should contain your GitHub username.

Update your upstream remote

Your cloned repository stores a local history of the activity in remote
repositories, and only interacts with the Internet when certain commands
are invoked. In order to synchronize the activity in the official Blocks
repository (which Git now knows as upstream) with the local mirror of
the history related to upstream, run

$ git fetch upstream

You should do this before starting every pull request, for reasons that
will become clear below.

Create a new branch for your pull request based on the latest development version of Blocks

In order to create a new branch starting from the latest commit in the
master branch of the official Blocks repository, make sure you’ve fetched
from upstream (see above) and run

$ git checkout -b my_branch_name_for_my_cool_feature upstream/master

Obviously, you’ll probably want to choose a better branch name.

Note that doing this (rather than simply creating a new branch from some
arbtirary point) may save you from a (possibly painful) rebase later on.

Working on your pull request

Make modifications, stage them, and commit them

Repeat until satisfied:

	Make some modifications to the code

	Stage them using git add (git add -p is particularly useful)

	git commit them, alternately git reset to undo staging by
git add.

Push the branch to your fork

$ git push -u origin my_branch_name_for_my_cool_feature

Submitting for review

Send a pull request

This can be done from the GitHub web interface for your fork. See
this documentation from GitHub [https://help.github.com/articles/using-pull-requests/#initiating-the-pull-request] for more information.

Give your pull request an appropriate title which makes it obvious what
the content is. If it is intended to resolve a specific ticket, put “Fixes
#NNN.” in the pull request description field, where NNN is the issue
number. By doing this, GitHub will know to automatically close the issue [https://github.com/blog/1506-closing-issues-via-pull-requests]
when your pull request is merged.

Blocks development occurs in two separate branches: The master branch is the
development branch. If you want to contribute a new feature or change the
behavior of Blocks in any way, please make your pull request to this branch.

The stable branch contains the latest release of Blocks. If you are fixing a
bug (that is present in the latest release), make a pull request to this branch.
If the bug is present in both the master and stable branch, two separate
pull requests are in order. The command git-cherry-pick_ could be useful here.

Incorporating feedback

In order to add additional commits responding to reviewer feedback, simply
follow the instructions above for using git add and git commit, and
finally git push (after running the initial command with -u, you should
simply be able to use git push without any further arguments).

Rebasing

Occasionally you will be asked to rebase your branch against the latest
master. To do this, run (while you have your branch checked out)

$ git fetch upstream && git rebase upstream/master

You may encounter an error message about one or more conflicts. See
GitHub’s help page on the subject [https://help.github.com/articles/resolving-merge-conflicts-after-a-git-rebase/]. Note that after a rebase you will
usually have to overwrite previous commits on your fork’s copy of the
branch with git push --force.

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 blocks	

 	
 	
 blocks.algorithms	

 	
 	
 blocks.bricks	

 	
 	
 blocks.bricks.attention	

 	
 	
 blocks.bricks.base	

 	
 	
 blocks.bricks.conv	

 	
 	
 blocks.bricks.cost	

 	
 	
 blocks.bricks.interfaces	

 	
 	
 blocks.bricks.lookup	

 	
 	
 blocks.bricks.parallel	

 	
 	
 blocks.bricks.recurrent.architectures	

 	
 	
 blocks.bricks.recurrent.base	

 	
 	
 blocks.bricks.recurrent.misc	

 	
 	
 blocks.bricks.sequence_generators	

 	
 	
 blocks.bricks.wrappers	

 	
 	
 blocks.config	

 	
 	
 blocks.extensions	

 	
 	
 blocks.extensions.monitoring	

 	
 	
 blocks.extensions.predicates	

 	
 	
 blocks.extensions.saveload	

 	
 	
 blocks.extensions.training	

 	
 	
 blocks.filter	

 	
 	
 blocks.graph	

 	
 	
 blocks.initialization	

 	
 	
 blocks.log	

 	
 	
 blocks.log.log	

 	
 	
 blocks.log.sqlite	

 	
 	
 blocks.main_loop	

 	
 	
 blocks.model	

 	
 	
 blocks.monitoring.evaluators	

 	
 	
 blocks.roles	

 	
 	
 blocks.select	

 	
 	
 blocks.serialization	

 	
 	
 blocks.theano_expressions	

 	
 	
 blocks.utils.containers	

 	
 	
 blocks.utils.profile	

 	
 	
 blocks.utils.theano_utils	

 	
 	
 blocks.utils.utils	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	_abc_cache (blocks.bricks.Activation attribute)

 	(blocks.bricks.base.Brick attribute)

 	(blocks.bricks.base.Children attribute)

 	(blocks.bricks.base.Parameters attribute)

 	(blocks.utils.containers.AnnotatingList attribute)

 	_abc_negative_cache (blocks.bricks.Activation attribute)

 	(blocks.bricks.base.Brick attribute)

 	(blocks.bricks.base.Children attribute)

 	(blocks.bricks.base.Parameters attribute)

 	(blocks.utils.containers.AnnotatingList attribute)

 	_abc_negative_cache_version (blocks.bricks.Activation attribute)

 	(blocks.bricks.base.Brick attribute)

 	(blocks.bricks.base.Children attribute)

 	(blocks.bricks.base.Parameters attribute)

 	(blocks.utils.containers.AnnotatingList attribute)

 	_abc_registry (blocks.bricks.Activation attribute)

 	(blocks.bricks.base.Brick attribute)

 	(blocks.bricks.base.Children attribute)

 	(blocks.bricks.base.Parameters attribute)

 	(blocks.utils.containers.AnnotatingList attribute)

 	
 	_allocate() (blocks.bricks.base.Brick method)

 	_Brick (class in blocks.bricks.base)

 	_compile() (blocks.monitoring.evaluators.AggregationBuffer method)

 	(blocks.monitoring.evaluators.DatasetEvaluator method)

 	_create_aggregators() (blocks.monitoring.evaluators.AggregationBuffer method)

 	_delitem() (blocks.bricks.base.Children method)

 	(blocks.utils.containers.AnnotatingList method)

 	_initialize() (blocks.bricks.base.Brick method)

 	_push_allocation_config() (blocks.bricks.base.Brick method)

 	_push_initialization_config() (blocks.bricks.base.Brick method)

 	_setitem() (blocks.bricks.base.Children method)

 	(blocks.bricks.base.Parameters method)

 	(blocks.utils.containers.AnnotatingList method)

 	_validate_variable_names() (in module blocks.monitoring.evaluators)

 	_variable_name() (in module blocks.bricks.base)

A

 	
 	AbsoluteError (class in blocks.bricks.cost)

 	AbstractAttention (class in blocks.bricks.attention)

 	AbstractAttentionRecurrent (class in blocks.bricks.attention)

 	AbstractEmitter (class in blocks.bricks.sequence_generators)

 	AbstractFeedback (class in blocks.bricks.sequence_generators)

 	AbstractReadout (class in blocks.bricks.sequence_generators)

 	accumulation_updates (blocks.monitoring.evaluators.AggregationBuffer attribute)

 	Activation (class in blocks.bricks)

 	ActivationDocumentation (class in blocks.bricks.interfaces)

 	AdaDelta (class in blocks.algorithms)

 	AdaGrad (class in blocks.algorithms)

 	Adam (class in blocks.algorithms)

 	adapt_ndarray() (in module blocks.log.sqlite)

 	adapt_obj() (in module blocks.log.sqlite)

 	add_auxiliary_variable() (blocks.bricks.base.ApplicationCall method)

 	add_condition() (blocks.extensions.SimpleExtension method)

 	add_records() (blocks.extensions.monitoring.MonitoringExtension method)

 	add_role() (in module blocks.roles)

 	add_to_dump() (in module blocks.serialization)

 	add_updates() (blocks.algorithms.UpdatesAlgorithm method)

 	after_batch() (blocks.extensions.TrainingExtension method)

 	after_epoch() (blocks.extensions.ProgressBar method)

 	(blocks.extensions.TrainingExtension method)

 	after_training() (blocks.extensions.TrainingExtension method)

 	aggregate_quantities() (blocks.monitoring.evaluators.MonitoredQuantityBuffer method)

 	AggregationBuffer (class in blocks.monitoring.evaluators)

 	allocate() (blocks.bricks.base.Brick method)

 	(blocks.bricks.Brick method)

 	allocated (blocks.bricks.base.Brick attribute)

 	(blocks.bricks.Brick attribute)

 	allocation_config_pushed (blocks.bricks.base.Brick attribute)

 	(blocks.bricks.Brick attribute)

 	always_true() (in module blocks.extensions)

 	AnnotatingList (class in blocks.utils.containers)

 	application (blocks.bricks.base.Application attribute)

 	Application (class in blocks.bricks.base)

 	application() (in module blocks.bricks)

 	(in module blocks.bricks.base)

 	application_function (blocks.bricks.base.Application attribute)

 	ApplicationCall (class in blocks.bricks.base)

 	apply (blocks.bricks.attention.AttentionRecurrent attribute)

 	(blocks.bricks.BatchNormalization attribute)

 	(blocks.bricks.Bias attribute)

 	(blocks.bricks.Identity attribute)

 	(blocks.bricks.LeakyRectifier attribute)

 	(blocks.bricks.Linear attribute)

 	(blocks.bricks.LinearMaxout attribute)

 	(blocks.bricks.Logistic attribute)

 	(blocks.bricks.Maxout attribute)

 	(blocks.bricks.NDimensionalSoftmax attribute)

 	(blocks.bricks.Rectifier attribute)

 	(blocks.bricks.Sequence attribute)

 	(blocks.bricks.Softmax attribute)

 	(blocks.bricks.Softplus attribute)

 	(blocks.bricks.Tanh attribute)

 	(blocks.bricks.conv.Convolutional attribute)

 	(blocks.bricks.conv.Flattener attribute)

 	(blocks.bricks.conv.Pooling attribute)

 	(blocks.bricks.cost.CategoricalCrossEntropy attribute)

 	(blocks.bricks.cost.Cost attribute)

 	(blocks.bricks.cost.CostMatrix attribute)

 	(blocks.bricks.cost.MisclassificationRate attribute)

 	(blocks.bricks.lookup.LookupTable attribute)

 	(blocks.bricks.parallel.Distribute attribute)

 	(blocks.bricks.parallel.Fork attribute)

 	(blocks.bricks.parallel.Merge attribute)

 	(blocks.bricks.parallel.Parallel attribute)

 	(blocks.bricks.recurrent.architectures.GatedRecurrent attribute)

 	(blocks.bricks.recurrent.architectures.LSTM attribute)

 	(blocks.bricks.recurrent.architectures.SimpleRecurrent attribute)

 	(blocks.bricks.recurrent.misc.Bidirectional attribute)

 	(blocks.bricks.recurrent.misc.RecurrentStack attribute)

 	(blocks.bricks.sequence_generators.FakeAttentionRecurrent attribute)

 	
 	apply() (blocks.bricks.attention.AbstractAttentionRecurrent method)

 	(blocks.bricks.base.Application method)

 	apply_contexts() (blocks.bricks.attention.AttentionRecurrent method)

 	apply_delegate() (blocks.bricks.attention.AttentionRecurrent method)

 	(blocks.bricks.NDimensionalSoftmax method)

 	(blocks.bricks.recurrent.misc.Bidirectional method)

 	(blocks.bricks.sequence_generators.FakeAttentionRecurrent method)

 	apply_dropout() (in module blocks.graph)

 	apply_inputs() (blocks.bricks.parallel.Distribute method)

 	(blocks.bricks.Sequence method)

 	(blocks.bricks.parallel.Merge method)

 	(blocks.bricks.parallel.Parallel method)

 	apply_noise() (in module blocks.graph)

 	apply_outputs() (blocks.bricks.parallel.Distribute method)

 	(blocks.bricks.Sequence method)

 	(blocks.bricks.parallel.Fork method)

 	(blocks.bricks.parallel.Parallel method)

 	args_to_kwargs() (in module blocks.bricks.base)

 	attended_dim (blocks.bricks.attention.AbstractAttention attribute)

 	AttentionRecurrent (class in blocks.bricks.attention)

 	AUXILIARY (in module blocks.roles)

 	auxiliary_variables (blocks.graph.ComputationGraph attribute), [1]

 	AveragePooling (class in blocks.bricks.conv)

B

 	
 	b (blocks.bricks.LinearLike attribute)

 	BaseRecurrent (class in blocks.bricks.recurrent.base)

 	BaseSequenceGenerator (class in blocks.bricks.sequence_generators)

 	BasicMomentum (class in blocks.algorithms)

 	BasicRMSProp (class in blocks.algorithms)

 	batch (blocks.algorithms.TrainingAlgorithm attribute)

 	(blocks.algorithms.UpdatesAlgorithm attribute)

 	BatchNormalization (class in blocks.bricks)

 	BatchNormalizedMLP (class in blocks.bricks)

 	before_batch() (blocks.extensions.ProgressBar method)

 	(blocks.extensions.TrainingExtension method)

 	before_epoch() (blocks.extensions.ProgressBar method)

 	(blocks.extensions.TrainingExtension method)

 	before_training() (blocks.extensions.TrainingExtension method)

 	best_name (blocks.extensions.training.TrackTheBest attribute)

 	Bias (class in blocks.bricks)

 	BIAS (in module blocks.roles)

 	Bidirectional (class in blocks.bricks.recurrent.misc)

 	BinaryCrossEntropy (class in blocks.bricks.cost)

 	blocks.algorithms (module)

 	blocks.bricks (module), [1]

 	blocks.bricks.attention (module)

 	blocks.bricks.base (module)

 	blocks.bricks.conv (module)

 	blocks.bricks.cost (module)

 	blocks.bricks.interfaces (module)

 	blocks.bricks.lookup (module)

 	blocks.bricks.parallel (module)

 	blocks.bricks.recurrent.architectures (module)

 	blocks.bricks.recurrent.base (module)

 	blocks.bricks.recurrent.misc (module)

 	
 	blocks.bricks.sequence_generators (module)

 	blocks.bricks.wrappers (module)

 	blocks.config (module)

 	blocks.extensions (module)

 	blocks.extensions.monitoring (module)

 	blocks.extensions.predicates (module)

 	blocks.extensions.saveload (module)

 	blocks.extensions.training (module)

 	blocks.filter (module)

 	blocks.graph (module)

 	blocks.initialization (module)

 	blocks.log (module)

 	blocks.log.log (module)

 	blocks.log.sqlite (module)

 	blocks.main_loop (module)

 	blocks.model (module)

 	blocks.monitoring.evaluators (module)

 	blocks.roles (module)

 	blocks.select (module)

 	blocks.serialization (module)

 	blocks.theano_expressions (module)

 	blocks.utils.containers (module)

 	blocks.utils.profile (module)

 	blocks.utils.theano_utils (module)

 	blocks.utils.utils (module)

 	BOOLEAN_TRIGGERS (blocks.extensions.SimpleExtension attribute)

 	BoundApplication (class in blocks.bricks.base)

 	brick (blocks.bricks.base.Application attribute)

 	Brick (class in blocks.bricks)

 	(class in blocks.bricks.base)

 	BrickWrapper (class in blocks.bricks.wrappers)

C

 	
 	call_stack (blocks.bricks.base.Application attribute), [1]

 	callback() (in module blocks.extensions)

 	CallbackName (class in blocks.extensions)

 	categorical_cross_entropy (blocks.bricks.NDimensionalSoftmax attribute)

 	(blocks.bricks.Softmax attribute)

 	categorical_cross_entropy_delegate() (blocks.bricks.NDimensionalSoftmax method)

 	CategoricalCrossEntropy (class in blocks.bricks.cost)

 	change_recursion_limit() (in module blocks.utils.utils)

 	check_sanity() (blocks.model.Model method)

 	check_theano_variable() (in module blocks.utils.theano_utils)

 	Checkpoint (class in blocks.extensions.saveload)

 	children (blocks.bricks.base.Brick attribute), [1]

 	(blocks.bricks.Brick attribute), [1]

 	Children (class in blocks.bricks.base)

 	collect_parameters() (in module blocks.graph)

 	
 command line option

 	default_seed

 	log_backend

 	max_blob_size

 	profile, BLOCKS_PROFILE

 	recursion_limit

 	sqlite_database, BLOCKS_SQLITEDB

 	temp_dir, BLOCKS_TEMPDIR

 	CompositeExtension (class in blocks.extensions)

 	CompositeRule (class in blocks.algorithms)

 	ComputationGraph (class in blocks.graph)

 	compute_energies (blocks.bricks.attention.SequenceContentAttention attribute)

 	compute_states (blocks.bricks.attention.AttentionRecurrent attribute)

 	(blocks.bricks.sequence_generators.FakeAttentionRecurrent attribute)

 	compute_states() (blocks.bricks.attention.AbstractAttentionRecurrent method)

 	compute_states_delegate() (blocks.bricks.sequence_generators.FakeAttentionRecurrent method)

 	compute_states_outputs() (blocks.bricks.attention.AttentionRecurrent method)

 	compute_step() (blocks.algorithms.AdaDelta method)

 	(blocks.algorithms.AdaGrad method)

 	(blocks.algorithms.Adam method)

 	(blocks.algorithms.BasicMomentum method)

 	(blocks.algorithms.BasicRMSProp method)

 	(blocks.algorithms.RemoveNotFinite method)

 	(blocks.algorithms.Scale method)

 	(blocks.algorithms.StepRule method)

 	(blocks.algorithms.VariableClipping method)

 	
 	compute_steps() (blocks.algorithms.CompositeRule method)

 	(blocks.algorithms.Restrict method)

 	(blocks.algorithms.StepClipping method)

 	(blocks.algorithms.StepRule method)

 	compute_weighted_averages (blocks.bricks.attention.GenericSequenceAttention attribute)

 	compute_weights (blocks.bricks.attention.GenericSequenceAttention attribute)

 	ConfigurationError (class in blocks.config)

 	conn (blocks.log.sqlite.SQLiteLog attribute)

 	conserve_memory (blocks.bricks.BatchNormalizedMLP attribute)

 	Constant (class in blocks.initialization)

 	continue_training() (in module blocks.serialization)

 	conv2d_impl() (blocks.bricks.conv.Convolutional static method)

 	(blocks.bricks.conv.ConvolutionalTranspose method)

 	Convolutional (class in blocks.bricks.conv)

 	ConvolutionalSequence (class in blocks.bricks.conv)

 	ConvolutionalTranspose (class in blocks.bricks.conv)

 	copy_and_tag() (in module blocks.bricks.base)

 	cost (blocks.bricks.sequence_generators.BaseSequenceGenerator attribute)

 	(blocks.bricks.sequence_generators.Readout attribute)

 	(blocks.bricks.sequence_generators.SoftmaxEmitter attribute)

 	(blocks.bricks.sequence_generators.TrivialEmitter attribute)

 	Cost (class in blocks.bricks.cost)

 	COST (in module blocks.roles)

 	cost() (blocks.bricks.sequence_generators.AbstractEmitter method)

 	(blocks.bricks.sequence_generators.AbstractReadout method)

 	cost_matrix (blocks.bricks.cost.AbsoluteError attribute)

 	(blocks.bricks.cost.BinaryCrossEntropy attribute)

 	(blocks.bricks.cost.CostMatrix attribute)

 	(blocks.bricks.cost.SquaredError attribute)

 	(blocks.bricks.sequence_generators.BaseSequenceGenerator attribute)

 	CostMatrix (class in blocks.bricks.cost)

 	create_bar() (blocks.extensions.ProgressBar method)

 	create_unbound_method() (in module blocks.bricks.base)

 	current_row (blocks.log.log.TrainingLogBase attribute)

D

 	
 	DatasetEvaluator (class in blocks.monitoring.evaluators)

 	DataStreamMonitoring (class in blocks.extensions.monitoring)

 	decay_rate (blocks.algorithms.RMSProp attribute)

 	decorators (blocks.bricks.NDimensionalSoftmax attribute)

 	DEFAULT_LOG_RECORD (blocks.extensions.Timestamp attribute)

 	
 default_seed

 	command line option

 	delegate() (blocks.bricks.base.Application method)

 	delegate_function (blocks.bricks.base.Application attribute)

 	dict_of_inputs() (blocks.graph.ComputationGraph method)

 	dict_subset() (in module blocks.utils.utils)

 	dict_union() (in module blocks.utils.utils)

 	dispatch() (blocks.extensions.CompositeExtension method)

 	(blocks.extensions.SimpleExtension method)

 	(blocks.extensions.TrainingExtension method)

 	Distribute (class in blocks.bricks.parallel)

 	do() (blocks.extensions.CompositeExtension method)

 	(blocks.extensions.FinishAfter method)

 	(blocks.extensions.Printing method)

 	(blocks.extensions.SimpleExtension method)

 	(blocks.extensions.Timestamp method)

 	(blocks.extensions.Timing method)

 	(blocks.extensions.monitoring.DataStreamMonitoring method)

 	(blocks.extensions.monitoring.TrainingDataMonitoring method)

 	(blocks.extensions.saveload.Checkpoint method)

 	(blocks.extensions.saveload.Load method)

 	(blocks.extensions.training.SharedVariableModifier method)

 	(blocks.extensions.training.TrackTheBest method)

 	
 	do_apply (blocks.bricks.attention.AttentionRecurrent attribute)

 	do_apply() (blocks.bricks.recurrent.misc.RecurrentStack method)

 	do_apply_contexts() (blocks.bricks.attention.AttentionRecurrent method)

 	do_apply_outputs() (blocks.bricks.attention.AttentionRecurrent method)

 	do_apply_sequences() (blocks.bricks.attention.AttentionRecurrent method)

 	do_apply_states() (blocks.bricks.attention.AttentionRecurrent method)

 	dump() (in module blocks.serialization)

 	dump_and_add_to_dump() (in module blocks.serialization)

E

 	
 	emit (blocks.bricks.sequence_generators.Readout attribute)

 	(blocks.bricks.sequence_generators.SoftmaxEmitter attribute)

 	(blocks.bricks.sequence_generators.TrivialEmitter attribute)

 	emit() (blocks.bricks.sequence_generators.AbstractEmitter method)

 	(blocks.bricks.sequence_generators.AbstractReadout method)

 	
 	enter() (blocks.utils.profile.Profile method)

 	evaluate() (blocks.monitoring.evaluators.DatasetEvaluator method)

 	exit() (blocks.utils.profile.Profile method)

 	extract_args() (in module blocks.utils.utils)

F

 	
 	FakeAttentionRecurrent (class in blocks.bricks.sequence_generators)

 	feedback (blocks.bricks.sequence_generators.LookupFeedback attribute)

 	(blocks.bricks.sequence_generators.Readout attribute)

 	(blocks.bricks.sequence_generators.TrivialFeedback attribute)

 	feedback() (blocks.bricks.sequence_generators.AbstractFeedback method)

 	(blocks.bricks.sequence_generators.AbstractReadout method)

 	Feedforward (class in blocks.bricks)

 	
 	FeedforwardSequence (class in blocks.bricks)

 	FILTER (in module blocks.roles)

 	find_bricks() (in module blocks.utils.utils)

 	find_extension() (blocks.main_loop.MainLoop method)

 	FinishAfter (class in blocks.extensions)

 	Flattener (class in blocks.bricks.conv)

 	Fork (class in blocks.bricks.parallel)

 	function() (blocks.extensions.training.SharedVariableModifier method)

G

 	
 	GatedRecurrent (class in blocks.bricks.recurrent.architectures)

 	generate (blocks.bricks.sequence_generators.BaseSequenceGenerator attribute)

 	generate() (blocks.initialization.Constant method)

 	(blocks.initialization.Identity method)

 	(blocks.initialization.IsotropicGaussian method)

 	(blocks.initialization.NdarrayInitialization method)

 	(blocks.initialization.Orthogonal method)

 	(blocks.initialization.Sparse method)

 	(blocks.initialization.SparseND method)

 	(blocks.initialization.Uniform method)

 	generate_delegate() (blocks.bricks.sequence_generators.BaseSequenceGenerator method)

 	generate_outputs() (blocks.bricks.sequence_generators.BaseSequenceGenerator method)

 	generate_states() (blocks.bricks.sequence_generators.BaseSequenceGenerator method)

 	GenericSequenceAttention (class in blocks.bricks.attention)

 	get_aggregated_values() (blocks.monitoring.evaluators.AggregationBuffer method)

 	(blocks.monitoring.evaluators.DatasetEvaluator method)

 	(blocks.monitoring.evaluators.MonitoredQuantityBuffer method)

 	get_annotation() (in module blocks.filter)

 	get_application_call() (in module blocks.filter)

 	get_brick() (in module blocks.filter)

 	get_dim() (blocks.bricks.attention.AbstractAttention method)

 	(blocks.bricks.BatchNormalization method)

 	(blocks.bricks.Bias method)

 	(blocks.bricks.Brick method)

 	(blocks.bricks.Linear method)

 	(blocks.bricks.attention.AttentionRecurrent method)

 	(blocks.bricks.attention.SequenceContentAttention method)

 	(blocks.bricks.base.Brick method)

 	(blocks.bricks.conv.Convolutional method)

 	(blocks.bricks.conv.ConvolutionalSequence method)

 	(blocks.bricks.conv.ConvolutionalTranspose method)

 	(blocks.bricks.conv.Pooling method)

 	(blocks.bricks.lookup.LookupTable method)

 	(blocks.bricks.recurrent.architectures.GatedRecurrent method)

 	(blocks.bricks.recurrent.architectures.LSTM method)

 	(blocks.bricks.recurrent.architectures.SimpleRecurrent method)

 	(blocks.bricks.recurrent.misc.Bidirectional method)

 	(blocks.bricks.recurrent.misc.RecurrentStack method)

 	(blocks.bricks.sequence_generators.BaseSequenceGenerator method)

 	(blocks.bricks.sequence_generators.FakeAttentionRecurrent method)

 	(blocks.bricks.sequence_generators.LookupFeedback method)

 	(blocks.bricks.sequence_generators.Readout method)

 	(blocks.bricks.sequence_generators.SoftmaxEmitter method)

 	(blocks.bricks.sequence_generators.TrivialEmitter method)

 	(blocks.bricks.sequence_generators.TrivialFeedback method)

 	
 	get_dims() (blocks.bricks.base.Brick method)

 	(blocks.bricks.Brick method)

 	get_hierarchical_name() (blocks.bricks.base.Brick method)

 	(blocks.bricks.Brick method)

 	get_iter_per_epoch() (blocks.extensions.ProgressBar method)

 	get_output_shape() (blocks.bricks.conv.Convolutional static method)

 	get_parameter_dict() (blocks.model.Model method)

 	get_parameter_values() (blocks.model.Model method)

 	get_parameters() (blocks.select.Selector method)

 	get_snapshot() (blocks.graph.ComputationGraph method)

 	get_theano_function() (blocks.graph.ComputationGraph method)

 	get_timestamp() (blocks.extensions.Timestamp method)

 	get_top_bricks() (blocks.model.Model method)

 	get_unique_path() (blocks.bricks.base.Brick method)

 	(blocks.bricks.Brick method)

 	GradientDescent (class in blocks.algorithms)

 	gradients (blocks.algorithms.GradientDescent attribute)

H

 	
 	h_uuid (blocks.log.log.TrainingLogBase attribute)

 	has_bias (blocks.bricks.lookup.LookupTable attribute)

 	(blocks.bricks.recurrent.base.BaseRecurrent attribute)

 	(blocks.bricks.recurrent.misc.Bidirectional attribute)

 	
 	has_biases (blocks.bricks.Initializable attribute), [1]

 	has_done_epochs() (in module blocks.extensions)

 	has_inputs() (blocks.graph.ComputationGraph method)

 	hessian_times_vector() (in module blocks.theano_expressions)

I

 	
 	Identity (class in blocks.bricks)

 	(class in blocks.initialization)

 	image_size (blocks.bricks.BatchNormalization attribute)

 	(blocks.bricks.conv.Pooling attribute)

 	initial_glimpses (blocks.bricks.attention.SequenceContentAttention attribute)

 	initial_glimpses() (blocks.bricks.attention.AbstractAttention method)

 	initial_outputs (blocks.bricks.sequence_generators.Readout attribute)

 	(blocks.bricks.sequence_generators.SoftmaxEmitter attribute)

 	(blocks.bricks.sequence_generators.TrivialEmitter attribute)

 	initial_outputs() (blocks.bricks.sequence_generators.AbstractEmitter method)

 	(blocks.bricks.sequence_generators.AbstractReadout method)

 	initial_states (blocks.bricks.attention.AttentionRecurrent attribute)

 	(blocks.bricks.recurrent.architectures.GatedRecurrent attribute)

 	(blocks.bricks.recurrent.architectures.LSTM attribute)

 	(blocks.bricks.recurrent.architectures.SimpleRecurrent attribute)

 	(blocks.bricks.recurrent.base.BaseRecurrent attribute)

 	(blocks.bricks.recurrent.misc.RecurrentStack attribute)

 	(blocks.bricks.sequence_generators.BaseSequenceGenerator attribute)

 	(blocks.bricks.sequence_generators.FakeAttentionRecurrent attribute)

 	initial_states_outputs() (blocks.bricks.attention.AttentionRecurrent method)

 	(blocks.bricks.recurrent.base.BaseRecurrent method)

 	(blocks.bricks.sequence_generators.BaseSequenceGenerator method)

 	(blocks.bricks.sequence_generators.FakeAttentionRecurrent method)

 	Initializable (class in blocks.bricks)

 	initialization_config_pushed (blocks.bricks.base.Brick attribute)

 	(blocks.bricks.Brick attribute)

 	initialization_updates (blocks.monitoring.evaluators.AggregationBuffer attribute)

 	initialize() (blocks.algorithms.TrainingAlgorithm method)

 	(blocks.algorithms.UpdatesAlgorithm method)

 	(blocks.bricks.Brick method)

 	(blocks.bricks.base.Brick method)

 	(blocks.initialization.NdarrayInitialization method)

 	
 	initialize_aggregators() (blocks.monitoring.evaluators.AggregationBuffer method)

 	(blocks.monitoring.evaluators.DatasetEvaluator method)

 	initialize_quantities() (blocks.monitoring.evaluators.MonitoredQuantityBuffer method)

 	initialized (blocks.bricks.base.Brick attribute)

 	(blocks.bricks.Brick attribute)

 	INPUT (in module blocks.roles)

 	input_dim (blocks.bricks.attention.ShallowEnergyComputer attribute)

 	(blocks.bricks.Bias attribute)

 	(blocks.bricks.Feedforward attribute)

 	(blocks.bricks.FeedforwardSequence attribute)

 	(blocks.bricks.LinearMaxout attribute)

 	(blocks.bricks.MLP attribute)

 	(blocks.bricks.lookup.LookupTable attribute)

 	(blocks.bricks.parallel.Fork attribute)

 	input_dims (blocks.bricks.parallel.Merge attribute)

 	(blocks.bricks.parallel.Parallel attribute)

 	input_names (blocks.bricks.parallel.Merge attribute)

 	(blocks.bricks.parallel.Parallel attribute)

 	inputs (blocks.bricks.base.Application attribute)

 	(blocks.graph.ComputationGraph attribute), [1]

 	(blocks.monitoring.evaluators.AggregationBuffer attribute)

 	(blocks.monitoring.evaluators.MonitoredQuantityBuffer attribute)

 	insert() (blocks.utils.containers.AnnotatingList method)

 	instances (blocks.bricks.base.Application attribute)

 	INTEGER_TRIGGERS (blocks.extensions.SimpleExtension attribute)

 	intermediary_variables (blocks.graph.ComputationGraph attribute), [1]

 	ipdb_breakpoint() (in module blocks.utils.utils)

 	is_graph_input() (in module blocks.utils.theano_utils)

 	is_shared_variable() (in module blocks.utils.theano_utils)

 	IsotropicGaussian (class in blocks.initialization)

 	iteration_state (blocks.main_loop.MainLoop attribute)

L

 	
 	l2_norm() (in module blocks.theano_expressions)

 	last_epoch_row (blocks.log.log.TrainingLogBase attribute)

 	lazy() (in module blocks.bricks)

 	(in module blocks.bricks.base)

 	LazyNone (class in blocks.bricks.base)

 	LeakyRectifier (class in blocks.bricks)

 	learning_rate (blocks.algorithms.Momentum attribute)

 	(blocks.algorithms.RMSProp attribute)

 	(blocks.algorithms.Scale attribute)

 	Linear (class in blocks.bricks)

 	LinearLike (class in blocks.bricks)

 	LinearMaxout (class in blocks.bricks)

 	Load (class in blocks.extensions.saveload)

 	
 	load() (in module blocks.serialization)

 	load_parameters() (in module blocks.serialization)

 	load_to() (blocks.extensions.saveload.Load method)

 	
 log_backend

 	command line option

 	log_probabilities (blocks.bricks.NDimensionalSoftmax attribute)

 	(blocks.bricks.Softmax attribute)

 	log_probabilities_delegate() (blocks.bricks.NDimensionalSoftmax method)

 	Logistic (class in blocks.bricks)

 	LookupFeedback (class in blocks.bricks.sequence_generators)

 	LookupTable (class in blocks.bricks.lookup)

 	low_memory_apply (blocks.bricks.recurrent.misc.RecurrentStack attribute)

 	LSTM (class in blocks.bricks.recurrent.architectures)

M

 	
 	main_loop (blocks.extensions.CompositeExtension attribute)

 	(blocks.extensions.TrainingExtension attribute), [1]

 	MainLoop (class in blocks.main_loop)

 	
 max_blob_size

 	command line option

 	Maxout (class in blocks.bricks)

 	MaxPooling (class in blocks.bricks.conv)

 	Merge (class in blocks.bricks.parallel)

 	
 	MisclassificationRate (class in blocks.bricks.cost)

 	MLP (class in blocks.bricks)

 	model (blocks.main_loop.MainLoop attribute)

 	Model (class in blocks.model)

 	momentum (blocks.algorithms.Momentum attribute)

 	Momentum (class in blocks.algorithms)

 	MonitoredQuantityBuffer (class in blocks.monitoring.evaluators)

 	MonitoringExtension (class in blocks.extensions.monitoring)

N

 	
 	name (blocks.bricks.base.Application attribute)

 	(blocks.bricks.Brick attribute)

 	(blocks.bricks.base.BoundApplication attribute)

 	(blocks.bricks.base.Brick attribute)

 	(blocks.extensions.TrainingExtension attribute)

 	NdarrayInitialization (class in blocks.initialization)

 	NDimensionalSoftmax (class in blocks.bricks)

 	nodes (blocks.select.Path attribute)

 	
 	normal_inputs() (blocks.bricks.recurrent.misc.RecurrentStack method)

 	normalization_axes (blocks.bricks.BatchNormalization attribute)

 	notification_name (blocks.extensions.training.TrackTheBest attribute)

 	num_args (blocks.extensions.training.SharedVariableModifier attribute)

 	num_channels (blocks.bricks.BatchNormalization attribute)

 	(blocks.bricks.conv.Pooling attribute)

 	num_output_channels (blocks.bricks.BatchNormalization attribute)

 	(blocks.bricks.conv.Convolutional attribute)

 	(blocks.bricks.conv.Pooling attribute)

O

 	
 	on_error() (blocks.extensions.TrainingExtension method)

 	on_interrupt() (blocks.extensions.TrainingExtension method)

 	on_resumption() (blocks.extensions.TrainingExtension method)

 	OnLogRecord (class in blocks.extensions.predicates)

 	original_image_size (blocks.bricks.conv.ConvolutionalTranspose attribute)

 	Orthogonal (class in blocks.initialization)

 	OUTPUT (in module blocks.roles)

 	output_dim (blocks.bricks.attention.ShallowEnergyComputer attribute)

 	(blocks.bricks.BatchNormalization attribute)

 	(blocks.bricks.Bias attribute)

 	(blocks.bricks.Feedforward attribute)

 	(blocks.bricks.FeedforwardSequence attribute)

 	(blocks.bricks.MLP attribute)

 	(blocks.bricks.lookup.LookupTable attribute)

 	(blocks.bricks.parallel.Merge attribute)

 	
 	output_dims (blocks.bricks.parallel.Fork attribute)

 	(blocks.bricks.parallel.Parallel attribute)

 	outputs (blocks.graph.ComputationGraph attribute)

P

 	
 	pack() (in module blocks.utils.utils)

 	Parallel (class in blocks.bricks.parallel)

 	PARAMETER (in module blocks.roles)

 	parameter_separator (blocks.select.Path attribute)

 	parameters (blocks.bricks.base.Brick attribute), [1]

 	(blocks.bricks.Brick attribute), [1]

 	(blocks.graph.ComputationGraph attribute), [1]

 	Parameters (class in blocks.bricks.base)

 	parse() (blocks.select.Path static method)

 	parse_args() (blocks.extensions.SimpleExtension static method)

 	part() (blocks.select.Path.BrickName method)

 	(blocks.select.Path.ParameterName method)

 	Path (class in blocks.select)

 	Path.BrickName (class in blocks.select)

 	Path.ParameterName (class in blocks.select)

 	Pooling (class in blocks.bricks.conv)

 	Predicate (class in blocks.extensions)

 	preprocess (blocks.bricks.attention.AbstractAttention attribute)

 	(blocks.bricks.attention.SequenceContentAttention attribute)

 	previous_row (blocks.log.log.TrainingLogBase attribute)

 	
 	print_shape() (in module blocks.utils.utils)

 	print_shapes (blocks.bricks.base.Brick attribute), [1]

 	(blocks.bricks.Brick attribute), [1]

 	print_sum() (in module blocks.utils.utils)

 	Printing (class in blocks.extensions)

 	probs (blocks.bricks.sequence_generators.SoftmaxEmitter attribute)

 	process_batch() (blocks.algorithms.TrainingAlgorithm method)

 	(blocks.algorithms.UpdatesAlgorithm method)

 	(blocks.monitoring.evaluators.DatasetEvaluator method)

 	Profile (class in blocks.utils.profile)

 	
 profile, BLOCKS_PROFILE

 	command line option

 	ProgressBar (class in blocks.extensions)

 	properties (blocks.bricks.base.Application attribute)

 	property() (blocks.bricks.base.Application method)

 	push_allocation_config() (blocks.bricks.base.Brick method)

 	(blocks.bricks.Brick method)

 	push_initialization_config() (blocks.bricks.base.Brick method)

 	(blocks.bricks.Brick method)

 	put_hook() (in module blocks.utils.theano_utils)

Q

 	
 	quantity_names (blocks.monitoring.evaluators.MonitoredQuantityBuffer attribute)

R

 	
 	Random (class in blocks.bricks)

 	readout (blocks.bricks.sequence_generators.Readout attribute)

 	Readout (class in blocks.bricks.sequence_generators)

 	readout() (blocks.bricks.sequence_generators.AbstractReadout method)

 	readout_dim (blocks.bricks.sequence_generators.AbstractEmitter attribute)

 	(blocks.bricks.sequence_generators.AbstractReadout attribute)

 	readout_variables (blocks.monitoring.evaluators.AggregationBuffer attribute)

 	record_name() (blocks.extensions.monitoring.MonitoringExtension method)

 	Rectifier (class in blocks.bricks)

 	recurrent() (in module blocks.bricks.recurrent.base)

 	RecurrentStack (class in blocks.bricks.recurrent.misc)

 	
 recursion_limit

 	command line option

 	
 	RemoveNotFinite (class in blocks.algorithms)

 	rename_function() (in module blocks.bricks.base)

 	replace() (blocks.graph.ComputationGraph method)

 	report() (blocks.utils.profile.Profile method)

 	repr_attrs() (in module blocks.utils.utils)

 	requires (blocks.monitoring.evaluators.MonitoredQuantityBuffer attribute)

 	reraise_as() (in module blocks.utils.utils)

 	Restrict (class in blocks.algorithms)

 	resume() (blocks.log.log.TrainingLogBase method)

 	RMSProp (class in blocks.algorithms)

 	run() (blocks.main_loop.MainLoop method)

S

 	
 	Scale (class in blocks.algorithms)

 	scan_variables (blocks.graph.ComputationGraph attribute), [1]

 	scans (blocks.graph.ComputationGraph attribute)

 	secure_dump() (in module blocks.serialization)

 	seed_rng (blocks.bricks.Random attribute)

 	select() (blocks.select.Selector method)

 	Selector (class in blocks.select)

 	SEPARATOR (blocks.extensions.monitoring.MonitoringExtension attribute)

 	separator (blocks.select.Path attribute)

 	separator_re (blocks.select.Path attribute)

 	Sequence (class in blocks.bricks)

 	SequenceContentAttention (class in blocks.bricks.attention)

 	SequenceGenerator (class in blocks.bricks.sequence_generators)

 	set_conditions() (blocks.extensions.SimpleExtension method)

 	set_parameter_values() (blocks.model.Model method)

 	ShallowEnergyComputer (class in blocks.bricks.attention)

 	shared_floatx() (in module blocks.utils.theano_utils)

 	shared_floatx_nans() (in module blocks.utils.theano_utils)

 	shared_floatx_zeros() (in module blocks.utils.theano_utils)

 	shared_floatx_zeros_matching() (in module blocks.utils.theano_utils)

 	shared_like() (in module blocks.utils.theano_utils)

 	shared_variables (blocks.graph.ComputationGraph attribute), [1]

 	SharedVariableModifier (class in blocks.extensions.training)

 	SimpleExtension (class in blocks.extensions)

 	SimpleRecurrent (class in blocks.bricks.recurrent.architectures)

 	
 	Softmax (class in blocks.bricks)

 	SoftmaxEmitter (class in blocks.bricks.sequence_generators)

 	Softplus (class in blocks.bricks)

 	source_dim (blocks.bricks.parallel.Distribute attribute)

 	source_names (blocks.bricks.sequence_generators.AbstractReadout attribute)

 	Sparse (class in blocks.initialization)

 	SparseND (class in blocks.initialization)

 	SpatialBatchNormalization (class in blocks.bricks)

 	split_suffix() (blocks.bricks.recurrent.misc.RecurrentStack static method)

 	
 sqlite_database, BLOCKS_SQLITEDB

 	command line option

 	SQLiteEntry (class in blocks.log.sqlite)

 	SQLiteLog (class in blocks.log.sqlite)

 	SQLiteStatus (class in blocks.log.sqlite)

 	SquaredError (class in blocks.bricks.cost)

 	state_dims (blocks.bricks.attention.AbstractAttention attribute)

 	state_names (blocks.bricks.attention.AbstractAttention attribute)

 	state_to_gates (blocks.bricks.recurrent.architectures.GatedRecurrent attribute)

 	state_to_state (blocks.bricks.recurrent.architectures.GatedRecurrent attribute)

 	status (blocks.log.log.TrainingLogBase attribute)

 	(blocks.main_loop.MainLoop attribute)

 	step_rule (blocks.algorithms.GradientDescent attribute)

 	StepClipping (class in blocks.algorithms)

 	StepRule (class in blocks.algorithms)

 	suffix() (blocks.bricks.recurrent.misc.RecurrentStack static method)

 	suffixes() (blocks.bricks.recurrent.misc.RecurrentStack static method)

T

 	
 	take_glimpses (blocks.bricks.attention.AttentionRecurrent attribute)

 	(blocks.bricks.attention.SequenceContentAttention attribute)

 	(blocks.bricks.sequence_generators.FakeAttentionRecurrent attribute)

 	take_glimpses() (blocks.bricks.attention.AbstractAttention method)

 	(blocks.bricks.attention.AbstractAttentionRecurrent method)

 	take_glimpses_inputs() (blocks.bricks.attention.SequenceContentAttention method)

 	take_glimpses_outputs() (blocks.bricks.attention.AttentionRecurrent method)

 	take_last() (in module blocks.extensions.monitoring)

 	Tanh (class in blocks.bricks)

 	target_dims (blocks.bricks.parallel.Distribute attribute)

 	
 temp_dir, BLOCKS_TEMPDIR

 	command line option

 	theano_rng (blocks.bricks.Random attribute)

 	
 	theano_seed (blocks.bricks.Random attribute)

 	threshold (blocks.algorithms.StepClipping attribute)

 	Timer (class in blocks.utils.profile)

 	Timestamp (class in blocks.extensions)

 	Timing (class in blocks.extensions)

 	TrackTheBest (class in blocks.extensions.training)

 	TrainingAlgorithm (class in blocks.algorithms)

 	TrainingDataMonitoring (class in blocks.extensions.monitoring)

 	TrainingExtension (class in blocks.extensions)

 	TrainingFinish

 	TrainingLog (class in blocks.log.log)

 	TrainingLogBase (class in blocks.log.log)

 	TrivialEmitter (class in blocks.bricks.sequence_generators)

 	TrivialFeedback (class in blocks.bricks.sequence_generators)

U

 	
 	Uniform (class in blocks.initialization)

 	unpack() (in module blocks.utils.utils)

 	
 	updates (blocks.algorithms.UpdatesAlgorithm attribute), [1]

 	(blocks.graph.ComputationGraph attribute)

 	UpdatesAlgorithm (class in blocks.algorithms)

V

 	
 	VariableClipping (class in blocks.algorithms)

 	VariableFilter (class in blocks.filter)

 	
 	VariableRole (class in blocks.roles)

 	variables (blocks.graph.ComputationGraph attribute)

W

 	
 	W (blocks.bricks.LinearLike attribute)

 	(blocks.bricks.lookup.LookupTable attribute)

 	(blocks.bricks.recurrent.architectures.SimpleRecurrent attribute)

 	WEIGHT (in module blocks.roles)

 	
 	WithExtraDims (class in blocks.bricks)

 	(class in blocks.bricks.wrappers)

 	wrap() (blocks.bricks.WithExtraDims method)

 	(blocks.bricks.wrappers.BrickWrapper method)

 	(blocks.bricks.wrappers.WithExtraDims method)

 _images/code_quality.png
KEEP N MIND THAT TM
SELF-TAUGHT, S0 MY CODE
MAY BEA LITILE. MESSY.

LEMYE SEE-
T SURE
75 FNE.

\

L. MWOU.

v
THIS 15 LIKE BENG IN
R HOUSE BULLT BY A

CHILD USING NOTHING'
BUT A HATCHET AND A
PICTURE OF A HOUSE.

A

IT'S LIKE A SALAD RECIPE
URITTEN BY A CORPORATE.
LAWYER USING A PHONE

PUMDCORRECT THAT ONLY
KNEW EXCEL FORMULAS,

|

(

ITS LIKE SOMEONE TOOK A
TRANSCRIPT OF A COUPLE
ARGUING AT IKEA AND MADE
RANDOM EDITS UNTIL IT
COMPILED WITHOUT ERRORS|
\ 0Ky TUREFD
ASF/LE?U!DE

nav.xhtml

 Table of Contents

 		
 Welcome to Blocks’ documentation!

 		
 Installation

 		
 Requirements

 		
 Development

 		
 Documentation

 		
 Introduction tutorial

 		
 The Task

 		
 The Model

 		
 Building the model

 		
 Loss function and regularization

 		
 Initializing the parameters

 		
 Training your model

 		
 Building with bricks

 		
 Bricks life-cycle

 		
 Example

 		
 Lazy initialization

 		
 Nested bricks

 		
 Managing the computation graph

 		
 Using annotations

 		
 Live plotting

 		
 Recurrent neural networks

 		
 Quickstart example

 		
 Initial states

 		
 Reverse

 		
 Getting initial states back

 		
 Iterate (or not)

 		
 See Also

 		
 Configuration

 		
 Create your own brick

 		
 Bricks ingredients and recipe

 		
 Application methods

 		
 Lazy initialization

 		
 Example

 		
 Serialization

 		
 Pickling the training loop

 		
 Parameter saving

 		
 API Reference

 		
 Algorithms

 		
 Bricks

 		
 Convolutional bricks

 		
 Routing bricks

 		
 Recurrent bricks

 		
 Attention bricks

 		
 Sequence generators

 		
 Cost bricks

 		
 Wrapper bricks

 		
 Extensions

 		
 Monitoring extensions

 		
 Training

 		
 Serialization

 		
 Filter

 		
 Computational graph

 		
 Parameter initialization

 		
 Logging

 		
 Dictionary backend

 		
 Sqlite backend

 		
 Main loop

 		
 Model

 		
 Variable roles

 		
 Roles

 		
 Brick selectors

 		
 Serialization

 		
 Theano expressions

 		
 Common Utilities

 		
 Theano Utilities

 		
 Development

 		
 Formatting guidelines

 		
 Code guidelines

 		
 Validating function arguments

 		
 Abstract classes

 		
 Python 2 and 3

 		
 Reraising exceptions

 		
 Serialization

 		
 Mutable types as keyword argument defaults

 		
 Writing error messages

 		
 Unit testing

 		
 Writing and building documentation

 		
 Internal API

 		
 Installation

 		
 Sending a pull request

 		
 Making a new release

_images/plot_a.png
2.8 4

2.6 4

2.4 4

2.2 4

Plotting example #2

a

20

40

60

80

———
100

———
120

—
140

_images/plot_cost.png
Plotting example #1

0.14

0.12]

0.08
0.06
0.04]

0.02]

cost

20

40

60

80

T
100

———
120

T
140

_images/mnist.png

_static/code_quality.png
KEEP N MIND THAT TM
SELF-TAUGHT, S0 MY CODE
MAY BEA LITILE. MESSY.

LEMYE SEE-
T SURE
75 FNE.

\

L. MWOU.

v
THIS 15 LIKE BENG IN
R HOUSE BULLT BY A

CHILD USING NOTHING'
BUT A HATCHET AND A
PICTURE OF A HOUSE.

A

IT'S LIKE A SALAD RECIPE
URITTEN BY A CORPORATE.
LAWYER USING A PHONE

PUMDCORRECT THAT ONLY
KNEW EXCEL FORMULAS,

|

(

ITS LIKE SOMEONE TOOK A
TRANSCRIPT OF A COUPLE
ARGUING AT IKEA AND MADE
RANDOM EDITS UNTIL IT
COMPILED WITHOUT ERRORS|
\ 0Ky TUREFD
ASF/LE?U!DE

_images/sequence_generator_scheme.png
Legena:
S - states
g - glimpses
r - readouts
y - outputs
f - feedback
C - costs

Dashed rectangle for outputs expresses the fact
that they can be provided by the user (see
BaseSequenceGenerator.cost method)

readout.emit:

Yi

>

transition.compute_states

contexts

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/plot_a.png
2.8 4

2.6 4

2.4 4

2.2 4

Plotting example #2

a

20

40

60

80

———
100

———
120

—
140

_static/plot_cost.png
Plotting example #1

0.14

0.12]

0.08
0.06
0.04]

0.02]

cost

20

40

60

80

T
100

———
120

T
140

_static/minus.png

_static/mnist.png

_static/sequence_generator_scheme.png
Legena:
S - states
g - glimpses
r - readouts
y - outputs
f - feedback
C - costs

Dashed rectangle for outputs expresses the fact
that they can be provided by the user (see
BaseSequenceGenerator.cost method)

readout.emit:

Yi

>

transition.compute_states

contexts

_static/plus.png

_static/up.png

_static/up-pressed.png

